基于OpenCV的交通标志识别

本文介绍了基于OpenCV的交通标志识别方法,包括提取特征颜色、图片去噪、边缘检测和Hough圆变换四个步骤。通过识别红、蓝、黄三种颜色的交通标志,使用Canny边缘检测和霍夫圆变换定位标志位置。虽然存在无关区域的提取问题,但整体能准确识别交通标志。
摘要由CSDN通过智能技术生成

前几天看新闻得知微软为美国执法机关研发了一套基于AI识别,追踪并提取编辑视频中出现的人脸的算法,只要输入一段带人脸信息的视频文件,运行后即可输出一段所有人脸已被提取并且按要求编辑好的视频文件。当然该算法目前仍然存在局限,在人脸被部分遮挡、快速移动等情况下,无法正确识别,同时,执法机关也并非想要一个视频文件中相关不相关的所有人的人脸被获取出来,算法真正应用于实际也许还需经过一番优化。

类似上述新闻中从视频或图像中提取人脸或其它信息的学科称为计算机图形学(Computer Graphics),该门学科涵盖面很广,对于游戏爱好者来说,所看到的游戏画面精美流畅与否,与计算机的实时渲染有很大关系。另外3D游戏中模型为了呈现得更逼真的模拟现实的光照效果,AR/VR中的实时建模/渲染,都与CG悉悉相关。

于是本着学无止境的思想,尝试对计算机图形学入个门。该项目使用的是OpenCV2.4.9的库,至于为什么用这么老的库是因为我大学时下好了这个库在电脑里,并且这个项目比较初级用3+版本和2+版本没有差别。

OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac
OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++
类构成,同时提供了 Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。

OpenCV用C++语言编写,它的主要接口也是C++语言,但是依然保留了大量的C语言接口。该库也有大量的Python、Java and
MATLAB/OCTAVE(版本2.5)的接口。这些语言的API接口函数可以通过在线文档获得。如今也提供对于C#、Ch、Ruby的支持。

【百度百科如是说】

当然,一开始不能直接识别人脸等比较复杂多变的图形,本文是通过实现交通标志识别来做一个简单的讲解,至于更进一步的图象识别大家有兴趣可以继续学习。本次项目实现的交通标志识别主要是给予一张待识别图片,运行代码,系统提取到图中的交通标志内容并使用霍夫圆变换将其位置圈出。

识别交通标志位置的方法步骤如下:

1. 提取特征颜色 — 对图片去噪 — 提取边缘信息

  • 9
    点赞
  • 103
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
根据提供的引用内容,可以得知OpenCV是一个跨平台计算机视觉库,可以实现图像处理和计算机视觉方面的很多通用算法。其中包括交通标志识别。以下是一个基于C++OpenCV交通标志识别的示例代码: ```c++ #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main(int argc, char** argv) { // 读取图像 Mat src = imread("test.jpg"); if (src.empty()) { cout << "Could not open or find the image!\n" << endl; return -1; } // 转换为灰度图像 Mat gray; cvtColor(src, gray, COLOR_BGR2GRAY); // 进行高斯滤波 Mat blur; GaussianBlur(gray, blur, Size(3, 3), 0, 0); // 进行Canny边缘检测 Mat edges; Canny(blur, edges, 50, 150); // 进行形态学操作 Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3)); Mat dilate; dilate(edges, dilate, kernel); // 进行轮廓检测 vector<vector<Point>> contours; vector<Vec4i> hierarchy; findContours(dilate, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE); // 绘制轮廓 Mat result = src.clone(); for (size_t i = 0; i < contours.size(); i++) { drawContours(result, contours, static_cast<int>(i), Scalar(0, 0, 255), 2, LINE_8, hierarchy); } // 显示结果 imshow("Result", result); waitKey(0); return 0; } ``` 以上代码实现了对一张名为test.jpg的交通标志图像进行了处理,包括转换为灰度图像、高斯滤波、Canny边缘检测、形态学操作和轮廓检测,并将检测结果绘制在原图上显示出来。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值