忽略大小写 比较_“Excel做表时被大小写坑惨了...”同事居然1分钟搞定了!

33cf6c49f0b4e744c3e889bd5eb3a19c.png

作者:秒小可

来源:小可升职记

38ab2cd8f68a6e25f043570a3cb1511b.png

大家好,我是你们的小可~上次在讲解【Ctrl+H】查找替换快捷键时,大家都常忽略选项里的更多高级功能~


比如,里面可以帮你区分大小写查找。但在输入公式进行查找时,有时没区分大小写导致结果出错时该怎么办呢?来跟小可学下妙招吧!


1.Ctrl+H区分大小写查找
前排先复习快捷键【Ctrl+H】打开查找与替换功能里面,打开选项可区分大小写使查找更准确。

ea78014bd8fe42220736ea044537914f.gif


2.EXACT函数应用一
公式运算时需要区分大小写怎么办呢?
首先我们来了解一个区别字符串的函数:EXACT函数
如下GIF,输入EXACT会有提示:比较两个字符是否完全相同(区分大小写);如果完全相同,返回TRUE,否则返回FALSE。

7c938703bc9810bb4ba4a06b74d6134d.gif


如上GIF,
=EXACT(D2,A2),即比较A01和A01结果是TRUE
=EXACT(D2,A5),即比较A01和a01的结果是FALSE
了解EXACT后,我们就可以运用到平时的运算公式里了~
比如,大家对LOOKUP函数里面常用的通式是:=LOOKUP(1,0/(查找列=查找值),结果列),
现在只需把等号用EXACT函数代替,就可以准确查找了!
如下GIF查找A01的总销量:=LOOKUP(1,0/EXACT(A1:A7,D2),B1:B7)

e8309d0fc97d8ca7c70f0e005e815726.gif


3.EXACT函数应用二
在数据查询的好搭档——INDEX函数和MATCH函数中同样可使用~
如下GIF输入的公式是:
=INDEX(B1:B7,MATCH(1,--EXACT(A1:A7,D2),0))
输入完公式,要按CTRL+SHIFT+ENTER三键结束

504431a7b8ecb4fb23ec178fe5adb1c9.gif


关于【EXACT函数】的小妙招你学会了吗?
建议点赞收藏哦~

PS:私信我【700套】,即可领取以下700700套带公式Excel模板哦

d4406d56329fc96424a163ab0fbb059c.png

私信【ppt】,即可领取400套快闪PPT模板

5a009dff6bdb9ad372aace3048af4419.png

私信【10本】,可获得10本职场效率的电子书哦!

本专栏专注分享Excel实用的小技巧,帮助大家提高工作效率,告别加班哦~

<think>嗯,用户说构建模型太复杂,想要一个简单易懂的,适合初学者的版本。首先,我需要理解用户的具体需求。他们可能刚开始学习建模,面对复杂的步骤和术语感到困惑。我应该拆解建模的基本流程,用最基础的方法来讲解,避免使用高级术语。 接下来,我得确定用户可能涉及的模型类型。是数学建模、机器学习,还是其他类型?不过用户没有具体说明,所以得保持通用。先考虑最基础的线性回归模型,因为它简单且容易理解,适合作为例子。 然后,要分步骤讲解。第一步明确问题,这很重要,但初学者可能会忽略。需要强调明确目标的重要性,比如预测销售额,分析影响因素。第二步收集数据,可能需要解释数据来源和基本处理,比如Excel或CSV文件,不需要复杂的数据清洗。 第三步选择模型,这里要推荐最简单的模型,比如线性回归,并说明选择的原因,避免过拟合。第四步训练模型,用最小二乘法作为例子,解释损失函数和参数更新,但不用深入数学推导。第五步评估模型,用R²或均方误差,这些指标容易计算和理解。 最后,要给出一个具体例子,比如用学习间预测成绩,这样直观。还要附上Python代码示例,但代码要简单,使用sklearn,避免复杂代码让用户更困惑。 可能用户需要的是步骤的清晰列和实际例子,确保他们能一步步跟着。同要提醒常见错误,比如数据不足或模型复杂,帮助他们避免陷阱。总结部分要再次强调简单性和核心步骤,增强他们的信心。</think>好的!我会用最简化的方式为你讲解模型构建的4个基础步骤,并附上一个「学习间 vs 考试成绩」的建模案例(含Python代码模板)。保证新手也能轻松上手。 --- **一、模型构建极简四步法** 1. **明确问题**(占50%间) - 举个🌰:预测考试成绩、判断西瓜甜不甜、估算外卖送达间 - 关键输出:`Y = f(X)` 的数学达式 (如:成绩 = 学习间 × 0.8 + 20) 2. **数据准备**(30%间) - 最小数据要求:至少20组有效数据 - 工具推荐:Excel/CSV文件存储数据 - 检查重点:删除含空值的行 3. **选择模型**(5%间) - 新手首选:线性回归(一根直线解决问题) - 备选方案:决策树(类似流程图判断) 4. **验证优化**(15%间) - 核心指标:计算预测值与实际值的平均误差 - 优化口诀:误差大加数据,误差小可收工 --- **二、案例演示:学习间预测成绩** **数据集示例**(CSV格式): | 学习间(h) | 成绩(分) | |------------|---------| | 1 | 40 | | 2 | 55 | | 3 | 65 | | ... | ... | **Python代码模板**(需安装scikit-learn): ```python # 导入基础工具包 import pandas as pd from sklearn.linear_model import LinearRegression # 读取数据 data = pd.read_csv('study_data.csv') X = data[['学习间(h)']] # 输入特征 y = data['成绩(分)'] # 预测目标 # 创建模型(一行代码搞定) model = LinearRegression() # 训练模型(自动计算最佳参数) model.fit(X, y) # 使用模型预测 study_time = [[4]] # 输入4小学习间 predicted_score = model.predict(study_time) print(f"预测成绩:{predicted_score[0]:.1f}分") # 查看模型公式 slope = model.coef_[0] # 斜率 intercept = model.intercept_ # 截距 print(f"模型公式:成绩 = {slope:.2f}×学习间 + {intercept:.2f}") ``` --- **三、新手常见错误清单** 1. ❌ 试图用1个模型解决所有问题 → ✅ 先完成再完美 2. ❌ 收集100%完美数据才开始 → ✅ 有20组数据就能起步 3. ❌ 盲目使用深度学习 → ✅ 优先尝试线性回归 --- **四、模型效果自测** | 平均误差范围 | 模型评价 | 下一步行动 | |--------------|----------------|----------------------| | ≤5% | 👍 优秀 | 直接投入使用 | | 5%-10% | 👌 可用 | 增加数据量再训练 | | ≥10% | 🤔 需改进 | 检查数据/换简单模型 | --- **总结**:记住这个建模口诀 ➜ **"明确Y和X,数据要干净,先画散点图,直线打基础"** 通过这个框架,你已经能解决80%的初级预测问题啦!实际应用有具体问题可以再补充细节提问~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值