tf.nn.softmax_cross_entropy_with_logits

tf.nn.softmax_cross_entropy_with_logits(logits, labels) 该方法有关的一共两个参数:

  • 第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[batchsize,num_classes],单样本的话,大小就是num_classes

  • 第二个参数labels:实际的标签,大小同上

具体执行步骤:


import tensorflow as tf
 
#our NN's output
logits=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])
#step1:do softmax
y=tf.nn.softmax(logits)
#true label
y_=tf.constant([[0.0,0.0,1.0],[0.0,0.0,1.0],[0.0,0.0,1.0]])
#step2:do cross_entropy
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
#do cross_entropy just one step
cross_entropy2=tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits, y_))#dont forget tf.reduce_sum()!!
 
with tf.Session() as sess:
    softmax=sess.run(y)
    c_e = sess.run(cross_entropy)
    c_e2 = sess.run(cross_entropy2)
    print("step1:softmax result=")
    print(softmax)
    print("step2:cross_entropy result=")
    print(c_e)
    print("Function(softmax_cross_entropy_with_logits) result=")
    print(c_e2)
复制代码

输出结果:


step1:softmax result=
[[ 0.09003057  0.24472848  0.66524094]
 [ 0.09003057  0.24472848  0.66524094]
 [ 0.09003057  0.24472848  0.66524094]]
step2:cross_entropy result=
1.22282
Function(softmax_cross_entropy_with_logits) result=
1.2228
复制代码

在tf 1.13.1中有三个函数:

  • tf.nn.softmax_cross_entropy_with_logits(记为f1)
  • tf.nn.sparse_softmax_cross_entropy_with_logits(记为f3)
  • tf.nn.softmax_cross_entropy_with_logits_v2(记为f2) 下面说一下他们之间的区别。

f1和f3对于参数logits的要求都是一样的,即未经处理的,直接由神经网络输出的数值, 比如 [3.5,2.1,7.89,4.4]。两个函数不一样的地方在于labels格式的要求,

  • f1的要求labels的格式和logits类似,比如[0,0,1,0]。
  • 而f3的要求labels是一个数值,这个数值记录着ground truth所在的索引。以[0,0,1,0]为例,这里真值1的索引为2。所以f3要求labels的输入为数字2(tensor)。一般可以用tf.argmax()来从[0,0,1,0]中取得真值的索引。

f1和f2之间很像,实际上官方文档已经标记出f1已经是deprecated状态,推荐使用f2。两者唯一的区别在于

  • f1在进行反向传播的时候,只对logits进行反向传播,labels保持不变。
  • 而f2在进行反向传播的时候,同时对logits和labels都进行反向传播,如果将labels传入的tensor设置为stop_gradients,就和f1一样了。

那么问题来了,一般我们在进行监督学习的时候,labels都是标记好的真值,什么时候会需要改变label?f2存在的意义是什么?实际上在应用中labels并不一定都是人工手动标注的,有的时候还可能是神经网络生成的,一个实际的例子就是对抗生成网络(GAN)。

Reference

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值