1.谷歌Cloud Machine Learning平台简介:
机器学习的三要素是数据源、计算资源和模型。谷歌在这三个方面都有强大的支撑:谷歌不仅有种类丰富且数量庞大的数据资源,而且有强大的计算机群提供数据存储于数据运算能力,同时,还研究实现了TensorFlow这个机器学习、深度学习算法库。基于这些背景,谷歌也已经训练出了许多实用的可以应用于商业软件的模型,开发者可以直接调用相应的API来开发自己的商业软件。
Google Cloud Machine Learning是一个管理平台,它集合了上述所有资源(包括谷歌的数据资源、计算资源、TensorFlow深度学习算法框架、谷歌已经训练好的模型)到一个平台上,这是一个高度Integrated的平台,使用该平台进行机器学习与深度学习方面的研究会十分方便。
-
- Cloud Machine Learning处理多种格式的数据,Cloud Machine Learning(CML)可以以插件的形式进入谷歌其他的存储、查询和数据处理等产品,获取训练开发者所搭建的模型所需的数据集,并应用于开发者的模型的训练过程。其数据源是Google Cloud Dataproc,这是Google所拥有的强大的数据库,是可以支持成千上万用户和海量TB数据的全球预测平台,使得开发者训练的模型能够即插即用,这是Cloud Machie Learning平台最大的特色之一。该预测平台整合了Google云分析系统Cloud Dataflow,允许开发者访问Google Cloud Storage和BigQuery上的数据。
- Cloud Machine Learning与谷歌的各种云服务联动,因此开发人员可以采用自己的训练数据,轻松构建自己的预测分析模型,并且在该平台上训练自己的模型。Cloud Machine Learning是可用于构建和训练智能应用定制模型的云端机器学习框架,目前只有alpha版。
- Cloud Machine Learning管理平台结合TensorFlow,其一大亮点是支持异构设备分布式计算,它能够在各个平台上自动运行模型,从电话、单个CPU / GPU到成百上千GPU卡组成的分布式系统。开发者因此无需把时间花费在处理集群上,而更专注于模型创建。
- Cloud Machine Learning平台上发布了若干谷歌已经训练过的机器学习模型,开发人员可以直接调用相关API来进行自己的项目的开发,从而在自己的project中使用谷歌这些机器学习模型所提供的相应功能,从而加快开发各种商业应用。该平台上发布的已经训练过的模型有:
2.参考资料