- 博客(389)
- 资源 (50)
- 收藏
- 关注

原创 【经典论文解读】YOLOv4 目标检测
前言YOLO是一种目标检测方法,它的输入是整张图片,输出是n个物体的检测信息,可以识别出图中的物体的类别和位置。YOLOv4是在YOLOv3算法的基础上增加了很多实用的技巧,使得它的速度与精度都得到了极大的提升。YOLOv4版本设计思路如下:输入端:在模型训练阶段,使用了Mosaic数据增强、cmBN跨小批量标准化、SAT自对抗训练;BackBone层:也称主干网络,使用CSPDarknet53网络提取特征;同时使用Mish激活函数、Dropblock正则化;CSP 跨阶段部分连接。N.
2021-08-14 17:49:37
4936
9

原创 手把手搭建一个【卷积神经网络】
前言本文介绍卷积神经网络的入门案例,图像分类;使用到CIFAR10数据集,它包含10 类,即:“飞机”,“汽车”,“鸟”,“猫”,“鹿”, “狗”,“青蛙”,“马”,“船”,“卡车” ;共 60000 张彩色图片;通过搭建和训练卷积神经网络模型,对图像进行分类,能识别出图像是“汽车”,或“鸟”,还是其它。思路流程导入 CIFAR10 数据集 探索集数据,并进行数据预处理 建立模型(搭建神经网络结构、编译模型) 训练模型(把数据输入模型、评估准确性、作出预测、验证预测) 使用训练..
2021-05-05 17:12:20
12162
27

原创 【神经网络】综合篇——人工神经网络、卷积神经网络、循环神经网络、生成对抗网络
前言本文综合整理常用的神经网络,包括生物神经网络、人工神经网络、卷积神经网络、循环神经网络、生成对抗网络;参考了许多高校的课程、论文、博客和视频等。文章的结构是先进行概念了解,然后结合图片、结构图、一步一步详细讲解;大家要不看看?( •̀ ω •́ )y一、人工神经网络简介:人工神经网络(Artificial Neural Network, ANN),由人工神经元构成的网络,模拟人类的大脑;它模拟生物过程以反映人脑某些特征的计算结构。联系:人工神经元模拟生物神经元;人工神经网络模拟...
2021-04-17 17:03:06
29794
17

原创 一篇文章“简单”认识《卷积神经网络》(更新版)
卷积神经网络(Convolutional Neural Network, CNN),在计算机视觉中得到了广泛的应用。卷积神经网络通过卷积层与池化层的叠加实现对输入数据的特征提取,最后连接全连接层实现分类。基于什么提出卷积神经网络?动物视觉系统对外界的感知是:视觉皮层的每个神经元只响应某些特定区域的刺激(感受野) 从局部到全局(信息分层处理机制)卷积神经网络:每个神经元只需对 局部图像 进行感知;在更高层将局部的信息综合起来,得到全局信息;
2021-04-06 02:55:08
6601
14

原创 一篇文章认识《双目立体视觉》
双目立体视觉,由两个摄像头组成,像人的眼睛能看到三维的物体,具有深度的信息;单目视觉只能看到二维的物体。1)双目摄像头2)双目相机基线3)打开双目摄像头4)双目测距视差disparity、极线约束、极线校正/立体校正、a.双目标定b.双目矫正c.立体匹配d.双目测距(三角测量)e.测距效果立体视觉方法评测网站
2021-04-02 01:28:17
5141
24

原创 2020年个人总结和分享(华为云-云享专家、CSDN博客专家 成长记录)
2020年经历了许多,这一年不平凡,这里简单写了一点总结,分享职场、成长、感悟。发现了一些适合自己的效率工具,和大家分享使用该工具提升效率。喜欢这句来勉励自己“纸上谈来终觉浅,绝知此事要躬行”。
2021-01-01 15:03:19
2102
17

原创 目标检测模型NanoDet(超轻量,速度很快)介绍和PyTorch版本实践
YOLO、SSD、Fast R-CNN等模型在目标检测方面速度较快和精度较高,但是这些模型比较大,不太适合移植到移动端或嵌入式设备;轻量级模型 NanoDet-m,对单阶段检测模型三大模块(Head、Neck、Backbone)进行轻量化,目标加检测速度很快;模型文件大小仅几兆(小于4M)。该代码基于NanoDet项目进行小裁剪,专门用来实现Python语言、PyTorch 版本的代码,下载直接能使用,支持图片、视频文件、摄像头实时目标检测。
2020-12-02 23:25:20
21312
55

原创 基于神经网络——鸢尾花识别(Iris)
前言鸢尾花识别是学习AI入门的案例,这里和大家分享下使用Tensorflow 2框架,编写程序,获取鸢尾花数据,搭建神经网络,最后训练和识别鸢尾花。流程:1)获取鸢尾花数据,分析处理。2)整理数据位训练集,测试集。3)搭建神经网络模型。4)训练网络,优化网络模型参数。5)保存最优的模型,进行识别...
2020-07-05 19:30:03
22182
17
原创 Tensorflow1 搭建Cuda11
Tensorflow1中默认支持cuda10及以下的,最高的版本Tensorflow1.15默认使用cuda10;但是一些高性能的显卡,比如A100、3090等,它们只支持Cuda11的,这就不太友善了,毕竟不少项目依赖Tensorflow1搭建的。本文整理2种方法,一种是基于Conda搭建的,一种是基于docker搭建的,都测试过可用的。目录一、基于Conda搭建Tensorflow1 Cuda111.1 环境搭建1.2 查看环境的库1.3 验证环境。
2022-12-20 21:16:23
377
原创 SMOKE 单目相机 3D目标检测【训练模型】
本文基于SMOKE模型,使用kitti 3D目标检测数据集进行训练,记录一下过程。如果发现有错误,欢迎指出。
2022-11-13 16:47:13
1037
4
原创 图像语义分割 公开数据集 智能驾驶方向
本文整理了10个质量较好,数据集较大,比较新的,图像语义分割的公开数据集;主要服务于智能驾驶方向(辅助驾驶、自动驾驶等)。目录一、发布方:IIIT Hyderabad发布时间:2017年(2020年推出,2.0更新版本)简介:这是一个新颖的大规模街道级图像数据集,通过使用多边形来描绘单个对象,以精细和细粒度的样式执行注释包含25,000个高分辨率图像,标注为66个对象类别,有37个类别的特定实例的标签采集地点:欧洲、北美和南美、亚洲、非洲和大洋洲的部分地区。
2022-10-23 16:57:41
1219
2
原创 Focal Loss 安装与使用 TensorFlow2.x版本
本文介绍在TensorFlow2.x中,如何简便地使用 Focal Loss 损失函数;它可以通过 pip 来安装的;调用也比较方便。
2022-10-20 22:41:14
638
原创 SK 注意力模块 原理分析与代码实现
本文介绍SK模块,一种通道注意力模块,它是在SK-Nets中提出的,SK-Nets是2019 CVPR中的论文;SK模块可以被用于CV模型中,能提取模型精度,所以给大家介绍一下它的原理,设计思路,代码实现,如何应用在模型中。
2022-10-15 16:08:32
1525
1
原创 ECA 注意力模块 原理分析与代码实现
本文介绍ECA注意力模块,它是在ECA-Net中提出的,ECA-Net是2020 CVPR中的论文;ECA模块可以被用于CV模型中,能提取模型精度,所以给大家介绍一下它的原理,设计思路,代码实现,如何应用在模型中。它是一种通道注意力模块。
2022-09-25 11:18:05
6203
5
原创 SE 注意力模块 原理分析与代码实现
本文介绍SE注意力模块,它是在SENet中提出的,SENet是ImageNet 2017的冠军模型;SE模块常常被用于CV模型中,能较有效提取模型精度,所以给大家介绍一下它的原理,设计思路,代码实现,如何应用在模型中。后面还会介绍其它注意力模型:SK-Nets、CBAM、DANet、ECA-Net、CA等注意力模块。
2022-09-24 11:46:14
2831
1
原创 视觉 注意力机制——通道注意力、空间注意力、自注意力
本文介绍注意力机制的概念和基本原理,并站在计算机视觉CV角度,进一步介绍通道注意力、空间注意力、混合注意力、自注意力等。
2022-09-18 10:15:32
11618
原创 NVIDIA Jetson YOLOv5 tensorRT部署和加速 C++版
前言在实现NVIDIA Jetson AGX Xavier 部署YOLOv5的深度学习环境,然后能正常推理跑模型后;发现模型速度不够快,于是使用tensorRT部署,加速模型,本文介绍C++版本的。NVIDIA Jetson YOLOv5应用与部署_一颗小树x的博客-CSDN博客版本介绍:yolov5 v6.0、tensorrtx;Jetpack 4.5 [L4T 32.5.0]、CUDA: 10.2.89。我测试了 kitti 数据集的100张图片:加速后每一张图像,平均推理时间是22ms
2022-05-12 18:42:10
2647
4
原创 NVIDIA Jetson YOLOv5应用与部署
前言在NVIDIA Jetson AGX Xavier 部署YOLOv5的深度学习环境,然后能正常推理跑模型。首先介绍在NVIDIA Jetson 安装类似于Conda的虚拟环境,然后创建一个环境用来跑yolov5的;然后在创建好的环境,跑起yolov5,总结要点。目录一、安装虚拟环境二、创建环境三、安装torch、torchvision3.1安装torch3.2安装torchvision3.3 测试torch、torchvision四、安装YOLOv5依赖库..
2022-05-10 21:35:04
2278
4
原创 TensorRT模型加速 | 网络结构优化 | 低精度推理
前言TensorRT优化主要包括网络结构优化和低精度推理,本文将详细介绍这两种优化方式。其中网络结构优化通过“网络层及张量融合”实现,低精度推理通过使用FP16或INT8进行模型推理实现。一、低精度推理背景:神经网络在训练时采用高精度保存参数,一般采用32位浮点数(Floating-Point,FP32),因此模型最后的weights也是FP32格式。但是一旦完成训练,所有的网络参数就已经是最优,在推理过程中是无需进行反向迭代的,因此可以在推理中使用半精度浮点数fp1...
2022-05-02 19:53:48
802
原创 TensorRT 模型加速 1-输入、输出、部署流程
前言本文首先简要介绍 Tensor RT 的输入、输出以及部署流程,了解 Tensor RT 在部署模型中起到的作用。然后介绍 Tensor RT 模型导入流程,针对不同的深度学习框架,使用不同的方法导入模型。一、TensorRT 简介训练主要是获得层与层之间的权重参数,目的是为了获得一个性能优异的模型,关注点集中在模型的准确度、精度等指标。推理(inference)则不一样,其没有了训练中的反向迭代过程,只是针对新的数据进行预测。相较于训练,推理的更关注的是部署简单、处理速度快、
2022-04-07 18:02:49
2870
原创 卡尔曼滤波 KF | 扩展卡尔曼滤波 EKF (思路流程和计算公式)
前言本文分析卡尔曼滤波和扩展卡尔曼滤波,包括:思路流程、计算公式、简单案例等。滤波算法,在很多场景都有应用,感觉理解其思路和计算过程比较重要。目录一、卡尔曼滤波1.1 KF计算公式1.2 KF迭代过程1.3 KF使用说明二、卡尔曼滤波案例——多目标跟踪2.1卡尔曼滤波器——预测阶段2.2卡尔曼滤波器——更新阶段三、扩展卡尔曼滤波 EKF3.1EKF计算公式3.2 EKF迭代过程1.3 EKF使用说明一、卡尔曼滤波卡尔曼滤波思想由 ka...
2022-03-31 19:52:29
4741
原创 视觉SLAM 关键技术与发展概述
前言最近看了北京理工大学的课程《智能车辆概述与应用》,感觉入门角度讲的还不错的,于是通过本文记录关键内容。背景随着计算机视觉的发展,视觉在定位导航中的得到应用;其中相关技术包括视觉里程计VO、视觉SLAM。视觉里程计VO:关注两帧图像之间的位姿关系;一般不存储历史数据,只对当前或局部帧之间的位姿关系;往往忽视全局的一致性;运算速度快。视觉SLAM:计算当前帧(或局部帧) 和 具有历史数据地图的位姿关系。维持全局的一致性,保持定位精度。视觉里程计可以看作是视觉SLAM的一部分(前.
2022-03-23 23:37:51
5095
原创 基于 IMU 的位姿解算
前言参考了一些论文,总结了一些IMU 位姿解算的方法和案例,记录与分享给大家。一、IMU固定在某物体上IMU能 输出了载体的加速度、角速度,通过惯导解算原理获得载体运动的位姿轨迹。进行解算时,还需要消除 IMU 采样数据中存在的误差,以 及过程中产生的误差。将IMU 固定一个物体上,比如固定在机器人上(机器人上有个喷枪)、固定在一个装有摄像头的支架上等等,按照捷联惯导解算的原理,IMU 与固定物体的相对位置并不会发生变化,可以将 IMU的运动视作刚体运动。而刚体运动是通过位姿对时间的变化
2022-03-14 20:42:57
5806
2
原创 多目标跟踪算法 | FairMOT
前言本文介绍一个曾经在多目标跟踪上霸榜的追踪器 ,实用又简单的目标追踪Baseline,FairMOT!它属于一阶段多目标跟踪器(one-shot MOT),检测模型和重识别模型同时进行,提升了运行速率。FairMOT首先采用 anchor-free 目标检测方法(CenterNet),估计高分辨率特征图上的目标中心;然后,添加并行分支来估计像素级 Re-ID 特征,这类特征用于预测目标的 id。一、背景多目标跟踪 (MOT) 是计算机视觉领域中的重要任务,近年来,目标检测和 Re-ID 在
2022-02-14 17:54:59
2436
3
原创 多目标跟踪算法 | DeepSort
前言论文名称:(ICIP2017)Single-Simple Online and Realtime Tracking with a Deep Association Metric论文地址:https://arxiv.org/abs/1703.07402开源地址:https://github.com/nwojke/deep_sort一、多目标跟踪的工作流程(常规)(1)给定视频的原始帧;(2)运行对象检测器以获得对象的边界框;(3)对于每个检测到的物体,计算出不同的特征.
2022-02-09 22:17:04
15549
4
原创 视频监控 智能交通 数据集(目标检测、跟踪)
前言总结一下视频监控的数据集,用于目标检测、跟踪。一、UA-DETRAC 数据集UA-DETRAC是一个具有挑战性的真实世界多目标检测和多目标跟踪基准。该数据集包括在中国北京和天津的24个不同地点使用Cannon EOS 550D相机拍摄的10小时视频。视频以每秒25帧(fps)的速度录制,分辨率为960×540像素。UA-DETRAC数据集中有超过14万个帧,手动注释了8250个车辆,总共有121万个标记的对象边界框。官方还对目标检测和多目标跟踪中的最新方法以及本网站中详述的评估指标进行基
2022-01-29 11:10:03
10048
6
原创 损失函数解读 之 Focal Loss
前言Focal loss 是一个在目标检测领域常用的损失函数,它是何凯明大佬在RetinaNet网络中提出的,解决了目标检测中正负样本极不平衡和 难分类样本学习的问题。论文名称:Focal Loss for Dense Object Detection目录什么是正负样本极不平衡?two-stage 样本不平衡问题one-stage 样本不平衡问题交叉熵 损失函数Focal Loss代码实现Pytorch什么是正负样本极不平衡?目标检测算法为了定位目标会...
2022-01-24 20:45:00
7271
3
原创 多目标跟踪 | 评测指标
前言多目标跟踪器的性能需要某些指标来进行度量,目前使用比较广泛的评测指标主要有 Bernardin 等人定义的 CLEAR MOT 指标、Ristani 等人定义的 ID scores 指标以及最新的 Luiten 等人定义的HOTA 指标。目录一、基础的评测指标二、MOTA 和MOTP2.1 MOTA:多目标跟踪精度。2.2 MOTP:多目标跟踪准确度三、IDP、IDR、IDF3.1IDP:识别精确度3.2IDR:识别召回率3.3IDF1:平均数比...
2022-01-24 18:58:13
7889
1
原创 【2021年度总结】长风破浪会有时,直挂云帆济沧海
前言岁末年初,值得用一篇文章来纪念逝去的 2021;这里记录下在过去的一年里,我的经历与成长有价值的学习看李沐大佬分享的视频,学习到了好多东西。其中“深度学习论文精读”、“读论文”专栏的都是非常nice的,“动手学深度学习”适合大家巩固基础的。从新看了一遍高翔大佬的“视觉SLAM十四讲”,有了一些新的感悟。参加了上海交大的AI课程,获得一枚证书
2022-01-19 21:12:42
1213
2
原创 【论文解读】SMOKE 单目相机 3D目标检测(CVPR2020)
前言SMOKE是一种用于自动驾驶的实时单目 3D 物体检测器。为什么会注意这边文章呢?是因为这两天发布的百度Apollo 7.0的摄像头障碍物感知,也是基于这个模型改进的;于是令我产生了一些兴趣。论文名称:SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation论文地址:https://arxiv.org/pdf/2002.10111.pdf开源地址:https://github.com/lzccc..
2022-01-15 14:11:14
588
原创 OpenCV: FFMPEG: tag xxx is not found (format ‘mp4 / MP4 (MPEG-4 Part 14)‘)‘
前言使用OpenCV C++ 版本保存视频,遇到了错误OpenCV: FFMPEG: tag 0x00000898/'▒???' is not found这里是告诉我们找不到对应的视频编码;通常是看网络文章和官方的代码,然后参考过来,放到本地运行,但本地机器并不支持这种编码格式,比如:CV_FOURCC('M', 'J', 'P', 'G')、或CAP_OPENCV_MJPEG等。解决方案我们可以先查看本地机器支持哪些视频编码格式,然后从中选择一个合适的。通过VideoWri
2022-01-15 13:47:01
1846
原创 docker保存镜像、打包tar、加载tar镜像
前言本文记录docker保存镜像、打包tar、加载tar镜像。一、docker保存镜像作用:在现在容器镜像上保存镜像进行打包,在另一台服务上使用;或现有的容器安装了一些库,配置了开发环境,需要保存下载,下次加载后直接使用。1.1 首先查看下现有容器镜像(目的是查询需要保存镜像的ID)docker ps -a1.2 接下来用commit参数进行保存镜像(精简版)docker commit 7ca736d99653 yolov5:v6.2其中,7ca736d99
2021-12-31 20:00:33
16725
2
原创 CVPR2020 SMOKE 单目相机 3D目标检测【环境搭建篇】
前言SMOKE是一种用于自动驾驶的实时单目 3D 物体检测器。为什么会注意这边文章呢?是因为这两天发布的百度Apollo 7.0的摄像头障碍物感知,也是基于这个模型改进的;于是令我产生了一下兴趣。论文名称:SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation论文地址:https://arxiv.org/pdf/2002.10111.pdf开源地址:https://github.com/lzcccc.
2021-12-30 19:18:52
4095
9
原创 NVIDIA CUDA Toolkit 各个版本安装方式
前言需要安装 NVIDIA CUDA Toolkit,配置GPU加速环境;通常在网上看文章或直接去官方,是能看到CUDA Toolkit 的安装方式,但是最新版本的;比如 CUDA Toolkit 11.5,但代码环境需要CUDA Toolkit 10.2的,这就尴尬了,不知道去哪里找CUDA Toolkit 10.2 的安装方式。在 NVIDIA CUDA 官方逛一段时间,突然发现通过搜索来查找CUDA Toolkit 各个版本安装方式,本文记录和分享一下~~~查找NVIDIA CUDA
2021-12-30 18:33:12
8417
1
原创 YOLOv5 网络组件与激活函数 代码理解笔记
前言最近在看YOLOv5 第6个版本的代码,记录了一下笔记,分享一下。首先看了网络结构、网络组件,对应代码models\common.py。然后看了激活函数,对应代码utils\activations.py。目录【1】python 把if 写在一行的两种方式【2】Python isinstance() 函数【3】python - 理解python嵌套一行for循环【4】python 单斜杠/和双斜杆//的区别【5】in的详解【6】group convolution (分组
2021-12-19 21:08:31
3730
原创 ARGO数据集—自动驾驶场景(版本:Argoverse 1.1)
ARGO数据集通常称为Argoverse,它通过1000 多个驾驶小时,324,557 条的车辆轨迹,形成的数据集。官网地址:https://www.argoverse.org/data.html简介一个包含 113 个场景的 3D 跟踪注释的数据集;一个数据集包含 324,557 条有趣的车辆轨迹,从 1000 多个驾驶小时中提取;两张带有车道中心线、交通方向、地面高度等的高清 (HD) 地图;一种将地图数据与传感器信息连接起来的 API;...
2021-12-19 20:54:42
1653
原创 Google Colab 训练很慢原因——驱动器读取数据集慢(已解决)
前言最近在使用Google Colab 训练模型,分配的是 Tesla P100-PCIE-16G 显卡;这个显卡也不是很弱啊,但在训练模型时,发现很慢。比我本地的两张1080ti显卡(合起来也是16G)慢几倍了,感到非常困惑,后来看了很多文章,发现了是谷歌网盘驱动器读取数据集慢 导致的。。。。。。关于之前使用Google Colab(错误示范)首先是把代码和数据集也下载放到了谷歌网盘;想着下载处理好数据集后,下次能直接训练,不用重新下载数据集和重新处理数据了。然后是挂载谷歌网盘;Go.
2021-12-05 21:18:19
5312
12
原创 notebook 显示图片、训练过程可视化
前言在使用notebook训练模型,可以使用 tensorboard 来可视化训练过程的指标,比如精度、召回率、损失大小等等。生成的结果图片可以使用IPython来显示。一、显示图片使用到 IPython 中的display函数,举个例子:from IPython import displaydisplay.Image(filename='runs/detect/exp/zidane.jpg', width=640)filename 是图片路径+名称;width 是图片宽度。.
2021-12-03 20:24:19
1121
原创 Linux rar 压缩 解压文件
前言在Linux系统,需要对应 xxx.rar文件进行解压,或压缩某个文件;以安装rarlinux版本来实现。一、安装rar方案1直接使用apt、apt-get 安装即可,方便快捷。sudo apt-get install rar unrar方案2通过源码编译方式安装。# wget https://www.rarlab.com/rar/rarlinux-x64-6.0.2.tar.gz# tar -zxvf rarlinux-x64-6.0.2.tar.gz
2021-12-02 20:30:04
3602
原创 基于docker搭建conda深度学习环境(支持GPU加速)
前言在Ubuntu系统,创建一个docker,然后搭建conda深度学习环境,这样可以用conda或pip安装相关的依赖库了。一、创建一个docker为了方便开发,在Docker Hub官方中选择一个合适的condadocker镜像,然后下载到本地。我选择了“docker-anaconda”,地址是:https://hub.docker.com/r/continuumio/anaconda3下载命令如下:docker pull continuumio/anaconda.
2021-11-30 16:46:17
3801
1
整理近年来《人工智能》的标准和评估规范
2020-11-19
宝马:深度学习在自动驾驶中的应用及部署过程.pdf
2020-04-05
“2019年中国自动驾驶行业发展研究报告-前瞻产业研究院-2019.8”.pdf
2020-04-05
VScode+opencv3.4+mingw5.3+cmake-3.9.0.rar
2020-04-03
apollo_demo_2.0.bag数据包
2020-01-13
apollo__demo_1.5.bag数据包
2020-01-13
apollo--demo_1.0数据包
2020-01-13
decawave_trek1000_arm2.10_pc3.6.zip
2019-07-22
ZigBee各类传感器模块-例程及使用手册说明.zip
2019-07-19
bazel-0.27.1-installer-linux-x86_64.sh
2019-07-10
Win32DiskImager-0.9.5-install 树莓派和电脑传输文件
2019-02-25
全国大学生电子设计竞赛 培训资料
2018-10-21
CC2530 (zigbee) 中文数据手册完全版
2018-10-05
cc2530蓝牙 PWM 小车
2018-01-13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人