LeetCode - Permutations II

本文针对LeetCode上的排列组合问题(含重复元素),提供两种高效的回溯算法实现方案。一种是使用额外的布尔数组记录已访问的元素,另一种则是直接在原数组上进行标记。通过对比这两种方法,展示如何优化代码以提高执行效率。

题目链接:https://leetcode.com/problems/permutations-ii/

Given a collection of numbers that might contain duplicates, return all possible unique permutations.

For example,
[1,1,2] have the following unique permutations:
[1,1,2], [1,2,1], and [2,1,1].

题目大意,列出所有非重复的排列组合。一般采用回溯(backtracking)递归求解,对于递归过程中标记已访问的数据有两种方法,一是开辟数组vis[], 二是利用原数据数组,显然第二种效率高一些,具体耗时为一(32ms),二(28ms)。 第一种方法比较容易想到,一开始是我也只想到这一种,所以写博客记录一下思维的差距。

I 开辟vis[]数组

class Solution {
public:
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        vector<vector<int> > ret;
        if(nums.empty())
            return ret;
        sort(nums.begin(), nums.end());
        vector<bool> vis(nums.size(), false);
        vector<int> tmp;
        dfs(ret, nums, tmp, vis);
        return ret;
    }

    void dfs(vector<vector<int> > &ret, vector<int> &nums, vector<int> &tmp, vector<bool> &vis)
    {
        if(tmp.size() == nums.size()) {
            ret.push_back(tmp);
            return;
        }
        else {
            for(int i = 0; i < nums.size(); i++) {
                if(vis[i] == true)
                    continue;
                if(i > 0 && vis[i - 1] == false && vis[i] == false && nums[i] == nums[i - 1])
                    continue;
                tmp.push_back(nums[i]);
                vis[i] = true;
                dfs(ret, nums, tmp, vis);
                vis[i] = false;
                tmp.pop_back();
            }
        }
    }
};

II. 利用原数据数组标记

class Solution {
public:
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        vector<vector<int> > ret;
        if(nums.empty())
            return ret;
        sort(nums.begin(), nums.end()); //this is not necessary, but can raise efficiency
        dfs(ret, nums, 0);
        return ret;
    }

    //nums[0, begin) is visted, nums[begin, end] is not
    void dfs(vector<vector<int> > &ret, vector<int> &nums, int begin)
    {
        if(begin == nums.size() - 1) {
            ret.push_back(nums);
            return;
        }
        else {
            for(int i = begin; i < nums.size(); i++) {
                bool flag = false; // exit nums[j] == nums[i], where j range of [begin, i) ?
                for(int j = begin; j < i; j++) {
                    if (nums[i] == nums[j]) {
                        flag = true;
                        break;
                    }
                }
                if(flag == true)
                    continue;
                swap(nums[i], nums[begin]);
                dfs(ret, nums, begin + 1);
                swap(nums[i], nums[begin]);
            }
        }
    }
};

转载于:https://my.oschina.net/Jerrymingzj/blog/803817

你提供的代码是 **LeetCode 第46题:全排列(Permutations)** 的官方题解,使用 **回溯 + 交换法** 实现所有元素的全排列。该算法通过递归地交换数组中的元素,生成所有可能的排列组合。 --- ## ✅ 代码解析完整 VS2022 可运行版本 以下是适合在 **Visual Studio 2022 (VS2022)** 中运行的完整代码版本,包含 `vector`、主函数和测试用例。 ```cpp #include <iostream> #include <vector> using namespace std; class Solution { public: void backtrack(vector<vector<int>>& res, vector<int>& output, int first, int len) { // 所有数都填完了 if (first == len) { res.emplace_back(output); return; } for (int i = first; i < len; ++i) { // 动态维护数组:交换当前元素和第一个未固定元素 swap(output[i], output[first]); // 继续递归填下一个数 backtrack(res, output, first + 1, len); // 撤销交换,恢复现场 swap(output[i], output[first]); } } vector<vector<int>> permute(vector<int>& nums) { vector<vector<int>> res; backtrack(res, nums, 0, (int)nums.size()); return res; } }; // 打印结果的辅助函数 void printResult(const vector<vector<int>>& result) { cout << "[\n"; for (const auto& permutation : result) { cout << " ["; for (size_t i = 0; i < permutation.size(); ++i) { cout << permutation[i]; if (i != permutation.size() - 1) cout << ", "; } cout << "]\n"; } cout << "]\n"; } // 主函数测试 int main() { Solution sol; vector<int> nums; // 测试用例 1 nums = {1, 2, 3}; cout << "输入数组: "; for (int num : nums) cout << num << " "; cout << "\n所有全排列为:\n"; printResult(sol.permute(nums)); cout << endl; // 测试用例 2 nums = {0, 1}; cout << "输入数组: "; for (int num : nums) cout << num << " "; cout << "\n所有全排列为:\n"; printResult(sol.permute(nums)); cout << endl; // 测试用例 3 nums = {1}; cout << "输入数组: "; for (int num : nums) cout << num << " "; cout << "\n所有全排列为:\n"; printResult(sol.permute(nums)); cout << endl; return 0; } ``` --- ## ✅ 示例输出 ``` 输入数组: 1 2 3 所有全排列为: [ [1, 2, 3] [1, 3, 2] [2, 1, 3] [2, 3, 1] [3, 2, 1] [3, 1, 2] ] 输入数组: 0 1 所有全排列为: [ [0, 1] [1, 0] ] 输入数组: 1 所有全排列为: [ [1] ] ``` --- ## ✅ 算法逻辑详解 ### ✅ 问题背景 给定一个不含重复数字的数组 `nums`,返回其所有可能的全排列。 ### ✅ 解法思路:回溯 + 交换法 #### 步骤: 1. **递归终止条件**: - `first == nums.size()`:所有元素都已确定位置,将当前排列加入结果集 2. **递归过程**: - 从 `first` 到 `nums.size() - 1` 遍历所有可能的起始元素 - 将当前元素 `nums[i]` `nums[first]` 交换,表示固定当前元素到第一个位置 - 递归调用 `backtrack(..., first + 1)` 处理下一个位置 - 回溯:交换回来,恢复原数组状态,以便下一次尝试 #### 优点: - 不需要额外空间保存已使用元素,直接在原数组上操作 - 时间复杂度低,适合中等规模输入 --- ## ✅ 时间空间复杂度 | 类型 | 复杂度 | 说明 | |------|--------|------| | 时间复杂度 | O(n × n!) | 共 `n!` 个排列,每个排列需要 O(n) 的时间生成 | | 空间复杂度 | O(n) | 递归栈深度为 `n` | --- ## ✅ 常见问题排查(VS2022) 1. **编译错误** - 确保包含 `<vector>` 和 `<iostream>` - 使用 `using namespace std;` 或加上 `std::` 前缀 2. **运行时错误** - 注意空数组处理 - 检查 `swap()` 是否越界 3. **逻辑错误** - 确保回溯后恢复数组状态 - 确保递归终止条件正确 --- ## ✅ 对比其他解法 | 解法 | 时间复杂度 | 空间复杂度 | 特点 | |------|------------|------------|------| | 回溯 + 交换法(当前方法) | O(n × n!) | O(n) | 无需额外空间,高效 | | 回溯 + 标记数组 | O(n × n!) | O(n) | 更直观,但需要额外数组 | | STL `next_permutation` | O(n × n!) | O(n) | 利用库函数,适合快速实现 | | 递归生成法(分治) | O(n × n!) | O(n) | 逻辑清晰,但代码略复杂 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值