matlab max numpy,python numpy amax用法及代码示例

返回数组的最大值或沿轴的最大值。

参数:a: : array_like

输入数据。

axis: : None 或 int 或 tuple of ints, 可选参数

沿其运行的一个或多个轴。默认情况下,使用拼合的输入。

1.7.0版中的新功能。

如果这是一个整数元组,则在多个轴上选择最大值,而不是像以前那样在单个轴或所有轴上进行选择。

out: : ndarray, 可选参数

放置结果的备用输出数组。必须具有与预期输出相同的形状和缓冲区长度。看到doc.ufuncs(第“Output arguments”节)了解更多详情。

keepdims: : bool, 可选参数

如果将其设置为True,则缩小的轴将保留为尺寸1的尺寸。使用此选项,结果将针对输入数组正确广播。

如果传递了默认值,则keepdims不会传递给amax的子类方法ndarray,但是任何非默认值都是。如果sub-class’方法未实现keepdims任何例外情况都会提出。

initial: : scalar, 可选参数

输出元素的最小值。必须存在以允许在空片上进行计算。参考reduce有关详细信息。

1.15.0版中的新功能。

where: : array_like of bool, 可选参数

要比较的最大元素。参考reduce有关详细信息。

1.17.0版中的新功能。

返回值:amax: : ndarray或标量

最多一个。如果axis为None,则结果为标量值。如果指定了axis,则结果为一维数组a.ndim - 1。

注意:

将传播NaN值,即,如果至少一项是NaN,则相应的最大值也将是NaN。要忽略NaN值(MATLAB行为),请使用nanmax。

不要使用amax用于2个数组的逐元素比较;当a.shape[0]是2maximum(a[0], a[1])比...快amax(a, axis=0)。

例子:

>>> a = np.arange(4).reshape((2,2))

>>> a

array([[0, 1],

[2, 3]])

>>> np.amax(a) # Maximum of the flattened array

3

>>> np.amax(a, axis=0) # Maxima along the first axis

array([2, 3])

>>> np.amax(a, axis=1) # Maxima along the second axis

array([1, 3])

>>> np.amax(a, where=[False, True], initial=-1, axis=0)

array([-1, 3])

>>> b = np.arange(5, dtype=float)

>>> b[2] = np.NaN

>>> np.amax(b)

nan

>>> np.amax(b, where=~np.isnan(b), initial=-1)

4.0

>>> np.nanmax(b)

4.0

您可以使用初始值来计算空切片的最大值,或将其初始化为其他值:

>>> np.max([[-50], [10]], axis=-1, initial=0)

array([ 0, 10])

请注意,初始值用作确定最大值的元素之一,这与默认参数Python的max函数不同,后者仅用于空的可迭代对象。

>>> np.max([5], initial=6)

6

>>> max([5], default=6)

5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值