可视化展示attention(seq2seq with attention in tensorflow)

本文介绍了一个基于TensorFlow实现的带Attention机制的Seq2Seq模型,该模型支持完全ingraph的Beam Search以提高速度,并支持outgraph的交互式Beam Search以增加灵活性。此外还展示了如何计算文本到文本的生成概率。

目前实现了基于tensorflow的支持的带attention的seq2seq。基于tf 1.0官网contrib路径下seq2seq

由于后续版本不再支持attention,迁移到melt并做了进一步开发,支持完全ingraph的beam search(更快速)

以及outgraph的交互式beam search(更灵活),其中ougraph的beam search支持alignments的输出。

attention的可视化也就是alignments的展示如下图(输入句子预测用户可能的搜索词):

   

 

   

   

   

   

   

Out graph beam search

   

   

In graph beam search

   

   

Calc text to text prob (计算文本到文本的生成概率)

 

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值