两直线异面的充要条件


已知直线
\begin{equation}
l_1:\frac{x-a_1}{l_1}=\frac{y-b_1}{n_1}=\frac{z-c_1}{m_1}
\end{equation}
直线
\begin{equation}
l_2:\frac{x-a_2}{l_2}=\frac{y-b_2}{n_2}=\frac{z-c_2}{m_2}
\end{equation}
求两直线异面的充要条件.


解:两直线异面,

  即
\begin{equation}
\begin{vmatrix}
  \vec{i}&\vec{j}&\vec{k}\\
l_1&n_1&m_1\\
l_2&n_2&m_2\\
\end{vmatrix}\neq \vec{0}
\end{equation}
  且两条直线不相交,即不存在实数$x_0,y_0,z_0$,使得

\begin{equation}
\begin{cases}
  \frac{x_0-a_1}{l_1}=\frac{y_0-b_1}{n_1}=\frac{z_0-c_1}{m_1}\\
\frac{x_0-a_2}{l_2}=\frac{y_0-b_2}{n_2}=\frac{z_0-c_2}{m_2}\\
\end{cases}
\end{equation}

转载于:https://www.cnblogs.com/yeluqing/archive/2012/08/11/3828049.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值