Description
小Y 最近开始学习算法姿势,但是因为小R 非常BB,给了她很多B6 题,所以她觉得自己已经没有什么前途了。于是小R 给了她一些稍微简单的题,让她觉得已经没有什么好害怕的了,其中一道是这样的:
给定一个长度为n 只包含左括号和右括号的序列,现在小R 想要知道经过每一个位置的合法子串有多少个。
空串是一个合法的串,如果A 和B 都是合法的串,那么(A) 和AB 都是合法的串。
给定一个长度为n 只包含左括号和右括号的序列,现在小R 想要知道经过每一个位置的合法子串有多少个。
空串是一个合法的串,如果A 和B 都是合法的串,那么(A) 和AB 都是合法的串。
Input
第一行输入一个正整数T 表示数据组数。接下来T 行每行一个字符串。
Output
对于每组数据,输出一个整数表示答案,令ansi 为经过第i 个位置的子串个数,那么你需要输出
(注意是先求余再求和)
Sample Input
1
()()
Sample Output
20
样例解释:
ans 数组为{2,2,2,2},所以输出20。
Data Constraint
对于10% 的数据,n<=100
对于30% 的数据,n <= 1000
对于60% 的数据,n <= 5 <= 10^4
对于100% 的数据,n <= 10^6,1 <= T<= 10
对于30% 的数据,n <= 1000
对于60% 的数据,n <= 5 <= 10^4
对于100% 的数据,n <= 10^6,1 <= T<= 10
分析
一眼差分
然后比赛的时候居然脑子一抽想不用栈处理括号序列,然后就崩了
其实我们需要记录左括号对应的右括号和右括号对应的左括号即可
然后O(n)扫一遍打上差分标记
没了
#include <iostream> #include <cstdio> #include <cstring> using namespace std; typedef long long ll; const int N=1e6+10; const ll P=1e9+7; char c[N]; ll a[N],b[N],next[N],back[N],ans[N]; int stack[N],top; int T,n; int main() { for (scanf("%d",&T);T;T--) { scanf("%s",c+1);n=strlen(c+1);top=0; for (int i=0;i<N;i++) a[i]=b[i]=next[i]=back[i]=ans[i]=0; for (int i=1;i<=n;i++) if (c[i]=='(') stack[++top]=i; else if (top) { back[i+1]=stack[top];next[stack[top--]]=i+1; } for (int i=n+1;i;i--) a[back[i]]+=a[i]+1; for (int i=1;i<=n;i++) b[next[i]]+=b[i]-1; ll lans=0; for (int i=1;i<=n;i++) ans[i]=a[i]+b[i],ans[i]+=ans[i-1],lans+=1ll*i*ans[i]%P; printf("%lld\n",lans); } }