function MULT(X,Y,n); {X和Y为2个小于2n的整数,返回结果为X和Y的乘积XY}
begin
S:=SIGN(X)*SIGN(Y); {S为X和Y的符号乘积}
X:=ABS(X);
Y:=ABS(Y); {X和Y分别取绝对值}
if n=1 then
if (X=1)and(Y=1) then return(S)
else return(0)
else begin
A:=X的左边n/2位;
B:=X的右边n/2位;
C:=Y的左边n/2位;
D:=Y的右边n/2位;
ml:=MULT(A,C,n/2);
m2:=MULT(A-B,D-C,n/2);
m3:=MULT(B,D,n/2);
S:=S*(m1*2n+(m1+m2+m3)*2n/2+m3);
return(S);
end;
end;
上述二进制大整数乘法同样可应用于十进制大整数的乘法以提高乘法的效率减少乘法次数。下面的例子演示了算法的计算过程。
设X=314l,Y=5327,用上述算法计算XY的计算过程可列表如下,其中带'号的数值是在计算完成AC,BD,和(A-B)(D-C)之后才填入的。
X=3141 A=31 B=41 A-B=-10
Y=5327 C=53 D=27 D-C=-26
AC=(1643)'
BD=(1107)'
(A-B)(D-C)=(260)'
XY=(1643)'104+[(1643)'+(260)'+(1107)']102+(1107)'
=(16732107)'
A=31 A1=3 B1=1 A1-B1=2
C=53 C1=5 D1=3 D1-C1=-2
A1C1=15 B1D1=3 (A1-B1)(D1-C1)=-4
AC=1500+(15+3-4)10+3=1643
B=41 A2=4 B2=1 A2-B2=3
D=27 C2=2 D2=7 D2-C2=5
A2C2=8 B2D2=7 (A2-B2)(D2-C2)=15
BD=800+(8+7+15)10+7=1107
|A-B|=10 A3=1 B3=0 A3-B3=1
|D-C|=26 C3=2 D3=6 D3-C3=4
A3C3=2 B3D3=0 (A3-B3)(D3-C3)=4
(A-B)(D-C)=200+(2+0+4)10+0=260
如果将一个大整数分成3段或4段做乘法,计算复杂性会发生会么变化呢?是否优于分成2段做的乘法?这个问题请大家自己考虑。