java大数乘法分治_实现利用分治方法实现一种高效的大整数乘法

本文介绍了一种使用分治策略提高大整数乘法效率的方法。通过分解大整数并进行3次乘法和多次加法、减法及移位操作,算法复杂度降低到O(n log^3 n)。代码示例展示了如何实现这个算法,包括大整数的加法、减法和乘法操作。
摘要由CSDN通过智能技术生成

我们可以用小学所学的方法来设计一个计算乘积XY的算法,但是这样做计算步骤太多,显得效率较低。如果将每2个1位数的乘法或加法看作一步运算,那么这种方法要作O(n2)步运算才能求出乘积XY。下面我们用分治法来设计一个更有效的大整数乘积算法。将n位的二进制整数X和Y各分为2段,每段的长为n/2位(为简单起见,假设n是2的幂.

由此,

X=A*10^(n/2)+B ,Y=C*10^(n/2)+D。

这样,X和Y的乘积为:

XY=[A*10^(n/2)+B][C*10^(n/2)+D]=AC*10^n+(AD+CB)*10^(n/2)+BD (1)

如果按式(1)计算XY,则我们必须进行4次n/2位整数的乘法(AC,AD,BC和BD),以及3次不超过n位的整数加法(分别对应于式(1)中的加号),此外还要做2次移位(分别对应于式(1)中乘2n和乘2n/2)。所有这些加法和移位共用O(n)步运算。设T(n)是2个n位整数相乘所需的运算总数,则由式(1),我们有:

由此可得T(n)=O(n2)。因此,用(1)式来计算X和Y的乘积并不比小学生的方法更有效。要想改进算法的计算复杂性,必须减少乘法次数。为此我们把XY写成另一种形式:

XY=AC*10n+[(A-B)(D-C)+AC+BD]*10n/2+BD (3)

虽然,式(3)看起来比式(1)复杂些,但它仅需做3次n/2位整数的乘法(AC,BD和(A-B)(D-C)),6次加、减法和2次移位。由此可得:

用解递归方程的套用公式法马上可得其解为T(n)=O(nlog3)=O(n1.59)。利用式(3),可写出相应的代码:

66算法分析

由公式(3)可以看出,我们需要完成以下功能:

1> 大整数的加法

2> 大整数的减法

3> 大整数的乘法

利用分治法在计算大整数的过程,当某个中间值在int所表示的范围内时,可直接用整数的加减乘运算进行计算(同时必须保证进行这种运算的结果也在int所标示的范围内),加快计算速度。

程序:

#include

#include

#include

using

namespace std;

//string类型转换成int类型

int

string_to_num(string k)//string字符串变整数型例如str="01",转换为整数的01.

{

int

back;

stringstream instr(k);

instr>>back;

return back;

}

//整形数转换为string类型

string

num_to_string(int intValue)

{

string

result;

stringstream stream;

stream

<< intValue;//将int输入流

stream

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值