计数排序
计数排序的原理
设被排序的数组为A,排序后存储到B,C为临时数组。所谓计数,首先是通过一个数组C[i]计算大小等于i的元素个数,此过程只需要一次循环遍历就可以;在此基础上,计算小于或者等于i的元素个数,也是一重循环就完成。下一步是关键:逆序循环,从length[A]到1,将A[i]放到B中第C[A[i]]个位置上。原理是:C[A[i]]表示小于等于a[i]的元素个数,正好是A[i]排序后应该在的位置。而且从length[A]到1逆序循环,可以保证相同元素间的相对顺序不变,这也是计数排序稳定性的体现。在数组A有附件属性的时候,稳定性是非常重要的。
计数排序的前提及适用范围
A中的元素不能大于k,而且元素要作为数组的下标,所以元素应该为非负整数。而且如果A中有很大的元素,不能够分配足够大的空间。所以计数排序有很大局限性,其主要适用于元素个数多,但是普遍不太大而且总小于k的情况,这种情况下使用计数排序可以获得很高的效率。由于用来计数的数组C的长度取决于待排序数组中数据的范围(等于待排序数组的最大值与最小值的差加上1),这使得计数排序对于数据范围很大的数组,需要大量时间和内存。例如:计数排序是用来排序0到100之间的数字的最好的算法,但是它不适合按字母顺序排序人名。但是,计数排序可以用在基数排序中的算法来排序数据范围很大的数组。
当输入的元素是 n 个 0 到 k 之间的整数时,它的运行时间是 Θ(n + k)。计数排序不是比较排序,排序的速度快于任何比较排序算法。
计数排序算法的步骤:
1.找出待排序的数组中最大和最小的元素
2.统计数组中每个值为i的元素出现的次数,存入数组C的第i项
3.对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加)
4.反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1
实现代码:
void CountSort(int *a, int size)
{
int min = a[0], max = a[0];
int i = 0;
for ( i = 0; i < size; i++)
{
if (min > a[i])
{
min = a[i];//找出数组中最小的数
}
if (max < a[i])
{
max = a[i];//找出数组中的最大数
}
}
int range = max - min + 1;
int *count = new int[range];
//初始化数组
//memset(count, 0, sizeof(int)*range);
for (i = 0; i < range; i++)
{
count[i] = 0;
}
//把数组a中数变成数组count中的0,1,2....
for (i = 0; i < size; i++)
{
//把数组count中对应位置制成数字,代表这个位置有几个相同的数
//列如制成1,代表这个位置有一个数
//列如制成2,代表这个位置有两个相同的数
count[a[i] - min]++;
}
int j = 0;
//把count中的数还原回数组a中,它就排好序了
for (i = 0; i < range; i++)
{
//重复了n次,就拿回去n次
while (count[i]>0)
{
a[j++] = i + min;
count[i]--;
}
}
delete[] count;
}
基数排序
算法思想:
待排序数组[62,14,59,88,16]简单点五个数字
分配10个桶,桶编号为0-9,以个位数数字为桶编号依次入桶,变成下边这样
| 0 | 0 | 62 | 0 | 14 | 0 | 16 | 0 | 88 | 59 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |桶编号
将桶里的数字顺序取出来,
输出结果:[62,14,16,88,59]
再次入桶,不过这次以十位数的数字为准,进入相应的桶,变成下边这样:
由于前边做了个位数的排序,所以当十位数相等时,个位数字是由小到大的顺序入桶的,就是说,入完桶还是有序
| 0 | 14,16 | 0 | 0 | 0 | 59 | 62 | 0 | 88 | 0 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |桶编号
因为没有大过100的数字,没有百位数,所以到这排序完毕,顺序取出即可
最后输出结果:[14,16,59,62,88]
实现代码:
//获取最大位数
static int GetMaxRadix(int *a, int size)
{
int radix = 10;
int count = 1;
for (int i = 0; i < size; i++)
{
//注意这里必须是">=",假如你的最大数是100,如果
//没有“=”的话,你获取最大位就是两位
while (a[i]>=radix)
{
radix *= 10;
count++;
}
}
return count;
}
static void _RadixSort(int* a, int size, int divisor, int* tmp)
{
int count[10] = { 0 };
int start[10] = { 0 };
//如果你处理的是个位,count代表就是数据个位在
//count对应位置出现的个数。十位,百位类似。
for (int i = 0; i < size; i++)
{
int num1 = a[i] / divisor;
count[num1 % 10]++;
}
//个位,十位,百位等出现的起始位置
for (int j = 1; j < 10; j++)
{
start[j] = start[j - 1] + count[j - 1];
}
//根据start,将a中的数据放在tmp中,已排好序
for (int k = 0; k < size; k++)
{
int num2 = a[k] / divisor;
tmp[start[num2 % 10]++] = a[k];
}
//把排好序的数据放回a中
for (int n = 0; n < size; n++)
{
a[n] = tmp[n];
}
}
void RadixSort(int *arr, int size)
{
assert(arr);
int *tmp = new int[size];
int n = GetMaxRadix(arr, size);
for (int i = 1; i <= n; i++)
{
int divisor = 1;
int k = i;
while (--k)
{
divisor *= 10;
}
_RadixSort(arr, size, divisor, tmp);
}
delete[] tmp;
}
转载于:https://blog.51cto.com/mnt3918290/1782597