【leetcode】Best Time to Buy and Sell Stock

本文探讨了如何通过设计算法来实现股票交易的最大化收益,仅允许完成一次买入和卖出操作。通过分析给定的价格数组,我们能够找到最佳的买卖时机,从而计算出最大利润。文中提供了两种解决方案,第一种直接计算从最后一天开始到第一天的最优买卖点,第二种则通过动态规划的思想,将问题转化为求解两数组之间的最大和。

Question :    

 

Say you have an array for which the ith element is the price of a given stock on day i.

If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.

for example: array[]  = { 2, 5, 3, 8, 9, 4 } , maxProfit = 9 - 2 = 7.

Anwser 1 :       

 

class Solution {
public:
    int maxProfit(vector<int> &prices) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        if(prices.size() == 0) return 0;
        
        int ret = 0;
        
        int len = prices.size();
        int maxPrice = prices[len-1];
        for(int i = len - 1; i >= 0; i--){
            maxPrice = max(prices[i], maxPrice);    // maxPrice
            ret = max(ret, maxPrice - prices[i]);   // maxProfit
        }
        
        return ret;
    }
};

注意点:

 

最大利润,应该是先买的最低价与后卖的最高价的差值,因此需要考虑时间先后顺序

 

Anwser 2 :       

 

class Solution {
public:
    int maxProfit(vector<int> &prices) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        int maxp = 0;
        int dp = 0;        
        for(int i = prices.size()-2; i >= 0 ;i--)
        {
            if(dp >= 0){
                dp += (prices[i+1] - prices[i]);
            } else {
                dp = max(0, prices[i+1] - prices[i]);
            }
            maxp = max(dp, maxp);
        }  
        return maxp;
    }
};

说明:

 

1) 此法把两数之间最大差,转化为了求两数组之间最大和

2) dp += (prices[i+1] - prices[i]) 实际上是 dp +=  (prices[i+1] - prices[i])  +  (prices[i] - prices[i-1])  +  (prices[i-1] - prices[i-2]) + ... =  (prices[i] - prices[j])   (i > j)

 

 

参考推荐:

数组中数对差最大

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值