统计从1到N中1的数目

1.Count1InAInteger()用来计算某一个数中1的个数,使用求余,然后再main中循环调用,但效率不高

 
  
1 #include < iostream >
2   using namespace std;
3
4 unsigned long Count1InAInteger(unsigned long n)
5 {
6 unsigned long iNum = 0 ;
7 while (n != 0 )
8 {
9 iNum += (n % 10 == 1 ) ? 1 : 0 ;
10 n /= 10 ;
11 }
12 return iNum;
13 }
14
15 unsigned long main()
16
17 {
18 unsigned long iCount = 0 ;
19 unsigned long n = 0 ;
20 cout << " 输入你需要统计的数: " ;
21 cin >> n;
22 for (unsigned long i = 1 ; i <= n; i ++ )
23 {
24 iCount += Count1InAInteger(i);
25 }
26 cout << " 总共有 " << iCount << " 个'1' " << endl;
27
28 }

2.先看看分析,编程之美上的:F(N)的计算方法: 假设 N=abcde,这里 a、b、c、d、e 分别是十进制数 N 的各个数位上的数字。如果要计算百位上出现 1 的次数,它将会受到三个因素的影响:百位上的数字,百位以下(低位)的数字,百位(更高位)以上的数字。

如果百位上的数字为 0,则可以知道,百位上可能出现 1 的次数由更高位决定,比如 12 013,则可以知道百位出现 1 的情况可能是 100~199,1 100~1 199,2 100~2 199,…,11 100~11 199,一共有 1 200 个。也就是由更高位数字(12)决定,并且等于更高位数字(12)×当前位数(100)。

如果百位上的数字为 1,则可以知道,百位上可能出现 1 的次数不仅受更高位影响,还受低位影响,也就是由更高位和低位共同决定。例如对于 12 113,受更高位影响,百位出现 1 的情况是 100~199,1 100~1 199,2 100~2 199,…,11 100~11 199,一共 1 200个,和上面第一种情况一样,等于更高位数字(12)×当前位数(100)。但是它还受低位影响,百位出现 1 的情况是 12 100~12 113,一共114 个,等于低位数字(123)+1。

如果百位上数字大于 1(即为 2~9),则百位上可能出现 1的次数也仅由更高位决定,比如 12 213,则百位出现 1 的可能性为:100~199,1 100~1 199,2 100~2 199,…,11 100~11 199,12 100~12 199,一共有 1 300 个,并且等于更高位数字+1(12+1)×当前位数(100)。通过上面的归纳和总结,我们可以写出如下的更高效算法来

 
  
1 /* ********************************************************************** */
2 /* factor控制位数,计算各个位上的数目,然后相加 */
3 /* ********************************************************************** */
4
5 #include < iostream >
6 using namespace std;
7 unsigned long sum1s(unsigned long n){
8 unsigned long count = 0 ;
9 unsigned long factor = 1 ; // 控制位数
10 unsigned long lowerNum = 0 ;
11 unsigned long currNum = 0 ;
12 unsigned long higherNum = 0 ;
13 while (n / factor != 0 ){
14 lowerNum = n - (n / factor) * factor; // 求出比当前位低的数字
15 currNum = (n / factor) % 10 ; // 求出当前位的值
16 higherNum = n / (factor * 10 ); // 求出比当前位高的数字
17 switch (currNum)
18 {
19 case 0 :
20 count += higherNum * factor;
21 break ;
22 case 1 :
23 count += higherNum * factor + lowerNum + 1 ;
24 break ;
25 default :
26 count += (higherNum + 1 ) * factor;
27 break ;
28 }
29 factor *= 10 ;
30 }
31 return count;
32 }
33 int main(){
34 unsigned long n;
35 cout << " 大哥,你想算多少啊: " ;
36 cin >> n;
37 cout << " 从1到 " << n << " " << sum1s(n) << " 个1 " << endl;
38 }
编程之美上说效率至少提高了40000倍…

转载于:https://www.cnblogs.com/lazycoding/archive/2011/04/08/count-one.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值