【原】iOS学习之三种拨打电话方式的比较

本文介绍了三种在iOS中实现拨打电话的方法,并进行了对比分析。第一种方法直接调用,但存在返回应用的问题;第二种方法使用UIWebView加载tel URL,可正常返回应用且有提示;第三种方法使用telprompt URL,但可能影响应用审核。

拨打电话小编从网上找到三种,在这里做一些总结和比较

1、基本使用

NSString *str = [[NSMutableString alloc] initWithFormat:@"tel://%@",@"152xxxx4165"];
[[UIApplication sharedApplication] openURL:[NSURL URLWithString:str]];

这种方法,拨打完电话回不到原来的应用,会停留在通讯录里,而且是直接拨打,不弹出提示!

在iOS9.0之后,这个方法也是可以回到原来的应用

2、推荐使用

UIWebView *webView = [[UIWebView alloc]init];
NSURL *url = [NSURL URLWithString:@"tel://152*****4165"];
[webView loadRequest:[NSURLRequest requestWithURL:url]];
[self.view addSubview:webView];

这种方法,打完电话后还会回到原来的程序,也会弹出提示!

3、不建议使用,做了解就可以

NSString *str = [[NSMutableString alloc] initWithFormat:@"telprompt://%@",@"152xxxx4165"];
[[UIApplication sharedApplication] openURL:[NSURL URLWithString:str

注意该方法与方法1的区别是:所拼接的字符串是 telprompt,而不是 tel

特别注意:

  可能无法上线审核通过

 

转载于:https://www.cnblogs.com/gfxxbk/p/5976626.html

【基于DQNPyTorch无人机】【多智能体深度Q学习(MA-DQL)】分布式用户连接最大化在基于无人机的通信网络中研究(Python代码实现)内容概要:本文围绕基于DQNPyTorch的多智能体深度Q学习(MA-DQL)在无人机通信网络中的应用展开研究,重点解决分布式用户连接最大化问题。通过构建多智能体强化学习模型,利用PyTorch框架实现算法训练与仿真,优化无人机作为空中基站时的用户接入策略,提升通信网络的覆盖效率与资源利用率。文中详细介绍了MA-DQL的网络架构设计、状态-动作空间定义、奖励机制构建及分布式协作机制,并结合Python代码实现验证了方法的有效性与优越性。; 适合人群:具备一定深度学习强化学习基础,熟悉PyTorch框架,从事无线通信、无人机网络或智能优化方向研究的研究生及科研人员。; 使用场景及目标:①应用于无人机辅助的无线通信网络中,实现用户连接的智能调度与资源优化;②为多智能体强化学习在分布式决策问题中的落地提供实践参考;③支持科研复现与算法改进,推动智能通信网络的发展。; 阅读建议:建议读者结合提供的Python代码进行实践操作,深入理解MA-DQL在实际通信场景中的建模过程,重点关注多智能体间的协同机制与奖励函数设计,同时可扩展至更复杂的动态环境与大规模网络场景中进行验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值