【leetcode】All Paths From Source to Target

题目如下:

Given a directed, acyclic graph of N nodes.  Find all possible paths from node 0 to node N-1, and return them in any order.
The graph is given as follows:  the nodes are 0, 1, ..., graph.length - 1.  graph[i] is a list of all nodes j for which the edge (i, j) exists.

Example:
Input: [[1,2], [3], [3], []] 
Output: [[0,1,3],[0,2,3]] 
Explanation: The graph looks like this:
0--->1
|    |
v    v
2--->3
There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.

Note: The number of nodes in the graph will be in the range [2, 15]. You can print different paths in any order, but you should keep the order of nodes inside one path.

解题思路:题目明确了没有回路,而且nodes的范围是[2,15],这实在是大大降低了难度,一个深度遍历就能搞定,注意由于结果需要输出path,所以需要记录每次遍历的过程。

代码如下:

class Solution(object):
    def copy(self,src,dest):
        for i in src:
            dest.append(i)
        return dest
    def allPathsSourceTarget(self,graph):
        stack = []
        stack.append([0]) 
        step = []
        res = []
        while len(stack) > 0:
            path = stack.pop(0)
            if path[-1] == len(graph) - 1:
                res.append(self.copy(path,[]))
            for i in graph[path[-1]]:
                tl = self.copy(path,[])
                tl.append(i)
                stack.insert(0,tl)
        return res

 

转载于:https://www.cnblogs.com/seyjs/p/8556522.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值