moiment lrc

任何人都会在彷徨的时候寻找答案

认为只要二人一起就可以支配时间
岁月流逝 宇宙的颜色也似乎被交错的心所改变

不断循环的季节中
如果在那一瞬间停顿就好
彷徨时刻的二人
在黑暗的远方寻找彼此的爱

现在你眼中的宇宙是什么颜色? 没有回应的同时
似乎忘记了非常重要的事情 令人内心感到困惑

在令人目眩的银河中
心渐渐受到了牵引
二人抬头望向星空
在那一瞬间宇宙的颜色重叠起来
为了不再遗忘重要的事情 不知世间污浊的心

在那不断循环的季节中
当地球消失的时候
心会归零
少年双眼凝望
二人继续前往梦的边际
紧握的手不再分离

罗马注音
dare mo mina samayoi nagara kotae wo sagashite
futari naraba jikan sae mo shihai dekiru to omotteta ano koro
tsuki hi wa nagare sora no ima mo kawaru you ni surechigatteta kokoro

megurikuru kisetsu no naka de
ano toki ga tomareba
ii no ni
futari mata samayoi nagara
kono sora wo kanata ni
ai wo sagashite

ima no kimi ni utsuru sora wa donna iro nara kikikaesenai nara
taisetsu na koto wasurete shimatte iku you de sukoshi tomadou kokoro

mekurumeku ginga no naka de
sono kokoro takuri
yosetemu
futari tada hoshi wo miagete
ano toki no sora no
iro wo kasaneteru

taisetsu na koto wasurete shimawanai de itai
kegare wo shiranu kokoro

megurikuru kisetsu no naka de
kono hoshi ga kiesaru
toki ni wa
kokoro goto zero ni modoshite
shounen no hitomi de
mitsumete
futari mata ano yume no hate
arukidasu tsunaida
te wo hanasazu ni

も皆さまよいながら 答えを探して···
二人ならば时间さえも支配できると 思ってたあの顷
月日は流れ 宇宙の色も変わるように すれ违ってた心
[One moment in this time. Baby I'm worried]

巡り来る季节の中で
あの瞬间が止まればいいのに
二人まださまよいながら
この暗暗の彼方に爱を探して···

今の君に映る宇宙はどんな色なの? 闻き返せないまま
大切なこと忘れてしまっていくようで 少し戸惑う心
[How come you don't answer my heart is hurting]

目眩く银河の中で
その心たぐり寄せてる
二人ただ星を见上げて
あの瞬间の宇宙の色を重ねてる

大切なこと忘れてしまわないでいて 汚れを知らぬ心

巡り来る季节の中で
この地球が消え去る时には
心ごとゼロに戻して
少年の瞳で见つめて
二人またあの梦の果てへ
歩き出す つないだ手を离さずに

转载于:https://www.cnblogs.com/beyondwcm/archive/2007/12/04/982094.html

内容概要:本文研究基于纳什博弈和交替方向乘子法(ADMM)的多微网主体能源共享模型,旨在实现多个微网之间的高效能源交互与优化调度。通过建立非合作博弈模型,各微网作为独立决策主体在满足自身需求的前提下追求成本最小化,利用ADMM算法实现分布式求解,确保隐私保护与计算效率。文中详细阐述了模型构建、博弈均衡分析、ADMM收敛性处理及仿真验证过程,并提供完整的Matlab代码实现,复现了SCI高水平论文的核心成果。; 适合人群:具备一定电力系统优化背景、博弈论基础知识及Matlab编程能力的研究生、科研人员或从事能源互联网、微电网调度相关工作的工程师;适合希望深入理解分布式优化算法在能源共享中应用的研究者。; 使用场景及目标:①掌握纳什博弈在多主体能源系统中的建模方法;②理解ADMM算法在分布式优化中的实现机制与收敛特性;③复现并拓展高水平SCI论文中的能源共享优化模型;④为微电网调度、能源市场机制设计等课题提供算法支持与代码参考。; 阅读建议:建议结合文档提供的Matlab代码逐段调试运行,深入理解变量设置、迭代流程与收敛判断逻辑;同时可延伸至其他分布式优化场景(如虚拟电厂、综合能源系统)进行模型迁移与改进。【SCI复现】基于纳什博弈和ADMM的多微网主体能源共享研究(Matlab代码实现)
内容概要:本文介绍了一种基于变分模态分解(VMD)与麻雀搜索算法(SSA)优化的最小二乘支持向量机(LSSVM)相结合的多变量电力负荷预测模型,该模型通过Matlab代码实现。首先利用VMD对原始负荷数据进行分解,降低序列复杂度并提取不同频率特征;随后采用SSA优化LSSVM的关键参数,提升预测精度;最后将优化后的LSSVM用于各模态分量的预测并叠加得到最终负荷预测结果。该方法有效提高了负荷预测的准确性与稳定性,适用于多变量输入场景下的短期负荷预测任务。; 适合人群:具备一定电力系统背景和Matlab编程能力的高校研究生、科研【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现)人员及从事能源预测相关工作的工程技术人员;熟悉机器学习算法并希望将其应用于实际负荷预测问题的研究者。; 使用场景及目标:①解决传统负荷预测模型精度不足、易受噪声干扰的问题;②实现对多影响因素(如温度、历史负荷等)耦合作用下的电力负荷高精度预测;③为智能电网调度、能源管理及电力市场决策提供可靠的数据支撑; 阅读建议:建议读者结合提供的Matlab代码逐步复现整个预测流程,重点关注VMD参数设置、SSA优化机制与LSSVM建模环节,同时可尝试替换数据集或引入其他优化算法进行对比实验,以深入掌握该混合预测模型的设计思路与调参技巧。
内容概要:本文围绕无槽永磁电机的磁场解析问题展开,指出传统的原始场公式(RFF)在不同电机几何形状下可能引入显著误差,为此提出一种更为精确的解析解法,并通过Matlab代码实现验证。该方法旨在提高无槽永磁电机磁场计算的准确性,适用于需要高精度建模的研究与工程应用场景。文中还提及多个相关科研方向和技术实现,涵盖无人机仿真控制、电力系统优化、路径规划、新能源系统调度、负荷与可再生能源预测等多个前沿领域,均配有Matlab或Python代码实现支持。; 适合人群:具备一定电机理论基础和编程能力,从事电气工程、自动化、【无槽永磁电机解】磁场问题的直接场解,称为原始场公式(RFF),在整个无槽永磁电机领域中可能导致显著的误差,这些误差随着机器几何形状的变化而显著不同,提出了一种达到解析解(Matlab代码实现)新能源系统、智能控制等领域研究的科研人员及研究生;熟悉Matlab/Simulink或Python的开发人员。; 使用场景及目标:①改进无槽永磁电机磁场计算精度,替代存在误差的RFF方法;②为电机设计、控制系统仿真、高性能驱动开发提供可靠模型基础;③拓展至多物理场耦合分析与优化设计。; 阅读建议:建议结合提供的Matlab代码深入理解解析解的推导过程,对比RFF与新方法在不同几何参数下的误差表现,强化理论与实践结合;同时可参考文中列出的其他研究主题及相关代码资源,拓展科研思路与技术实现路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值