密码学note

定义2.1

一个离散的随机变量,比方说X,由有限集合\mathfrak{X}和定义在\mathfrak{X}上的概率分布组成。我们用Pr[X=x]表示随机变量Xx时的概率。如果随机变量是固定的,我们有时缩写成Pr[X]。对任意的x\in \mathfrak{X},有0\leq Pr[x] \leq 1,并且

\sum_{x\in{\mathfrak{X}}}{}Pr[x]=1

定理2.1(Bayes定理)

Pr[x,y]=Pr[x|y]Pr[y]
Pr[x,y]=Pr[y|x]Pr[x]

得,如果Pr[y]>0,那么

Pr[x|y]=\frac{Pr[x]Pr[y|x]}{Pr[y]}

推论2.2

X和Y是统计独立的随机变量,当且仅当对所有的x\in Xy\in Y,有

Pr[x|y]=Pr[x]

证明: Pr[x,y]=Pr[x|y]Pr[y]=Pr[x]Pr[y]

定义2.3

一个密码体制具有完善保密性,即,如果对于任意的x\in \rhoy\in \epsilon,有Pr[x|y]=Pr[x]。也就是说,给定密文y,明文x的后验概率等于明文x的先验概率。

定义2.4

假设随机变量X在有限集合上取值,则随机变量X的熵的定义为:

H(X)=-\sum_{x\in X}^{}{Pr[x] \log_2 Pr[x]}

如果|X|=n并且对于所有的x\in X,Pr[x]=1/n,那么H(X)=\log_{2}{n}。同样,容易知道对于任意的随机变量X,H(X)\geq 0。H(X)=0当且仅当对于某一个x_0\in X,Pr[x_0]=1,对于所有的x\neq x_0,Pr[x]=0

定理2.4

假设密码体制(\rho ,\epsilon,\kappa,\xi,\mathfrak{D})满足|\kappa|=|\epsilon|=|\rho|。这个密码体制是完善保密的,当且仅当每个密钥被使用的概率都是1/|\kappa|,并且对于任意的x\in \rhoy\in\epsilon,存在唯一的密钥k使得e_k(x)=y

定理2.5(Jensen不等式)

假设f是区间I上的连续的严格的凸函数,\sum_{i=1}^n{a_i}=I,其中 a_i>0,1\leq i \leq n 。那么

\sum_{i=1}^na_i f(x_i)\leq f \left(\sum_{i=1}^n a_i x_i \right)

其中x_i\in I, 1\leq i \leq n 。当且仅当 x_1=...=x_n,等号成立。

定理2.6

假设X是一个随机变量,概率分布为p_1,p_2,...,p_n,其中p_i>0,1\leq i\leq n。那么H(X)\leq\log_2{n},当且仅当p_i=1/n,1\leq i \leq n时等号成立。

定义2.6

假设X和Y是两个随机变量。对于Y的任何固定值y,得到一个X上的(条件)概率分布;记相应的随机变量为X|y。显然,

H(X|y)=-\sum_x{Pr[x|y] \log_2 {Pr[x|y]}}

定义条件熵H(X|Y)为熵H(X|y)取遍所有的y的加权平均值:

H(X|Y)=-\sum_y \sum_x{Pr[y] Pr[x|y] \log_2 {Pr[x|y]}}

定理2.7

H(X,Y)\leq H(X) + H(Y),当且仅当X和Y统计独立时等号成立。

定理2.8

H(X,Y)=H(Y)+H(X|Y)

推论2.9

由定理2.7和定理2.8可得,

H(X,Y)\leq H(X)

当且仅当X和Y统计独立时,等号成立。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值