题目为 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
一开始考虑的思路是按照广度遍历去搜索,但对于递归,由于数组数量的增加,递归占用内存较多,所以会超时,但我觉得这也是一种思路,代码如下
public int UniquePathsWithObstacles(int[][] obstacleGrid) {
treeNodeAll(obstacleGrid, 0, 0);
return sum;
}
int sum = 0;
public void treeNodeAll(int[][] obstacleGrid, int left, int right)
{
if (obstacleGrid.Length > left && obstacleGrid[left].Length > right && obstacleGrid[left][right] == 0)
{
treeNodeAll(obstacleGrid, left + 1, right);
treeNodeAll(obstacleGrid, left, right + 1);
if (left == obstacleGrid.Length - 1 && right == obstacleGrid[left].Length - 1)
{
sum++;
}
}
else
{
}
}
看了官方题解,使用了动态规划,思路就是,任意位置的路径值就是这个点对应的左侧节点或者上侧节点的路线总数和。有了这个思路,代码很容易写出来,新建数组,我们先给最左侧一列和最上方一行按照该路径是否通畅赋值。之后遍历数组,代码如下
public int UniquePathsWithObstacles(int[][] obstacleGrid)
{
int width = obstacleGrid[0].Count();
int height = obstacleGrid.Length;
if (width<1||height<1)
{
return 0;
}
int[][] newRes = new int[height][];
for (int i = 0; i < height; i++)
{
newRes[i] = new int[width];
}
int w1 = 0, h1 = 0;
while (w1<width)
{
if (obstacleGrid[0][w1]==1)
{
break;
}
newRes[0][w1] = 1;
w1++;
}
while (h1 < height)
{
if (obstacleGrid[h1][0] == 1)
{
break;
}
newRes[h1][0] = 1;
h1++;
}
for (int i = 1; i < height; i++)
{
for (int j = 1; j < width; j++)
{
if (obstacleGrid[i][j]==0)
{
newRes[i][j] = newRes[i - 1][j] + newRes[i][j - 1];
}
}
}
return newRes[height - 1][width-1];
}