[UOJ409]Highway Tolls

题意:交互题,给定一个简单无向图和$A,B(1\leq A\lt B)$,你可以对每条边指定其边权为$A$或$B$后通过交互库询问$S\rightarrow T$的最短路($S,T$在程序运行之前已经确定),但你不知道$S,T$,现在要求$S$和$T$

无论是什么做法,我们首先需要知道边权为$1$时的最短路$dis$,在开始时把所有边设为$A$,调用一次即可

从部分分入手,第一个部分分(subtask1,2):图是一棵树,已知根是$S$,求$T$

因为只能调用很少次交互库,所以考虑二分

我们在bfs序上二分,假设当前二分到$[l,r]$,我们要检查$T$的bfs序是否在$[l,mid]$中,如果我们将bfs序在$[1,mid]$中的点的祖先边全部设为$A$,将其他边设为$B$,并且此时最短路为$dis\cdot A$,那么显然$T$的bfs序在$[l,mid]$中(因为任何bfs序在$[mid+1,r]$中的节点到根至少经过一条$B$边),于是时间复杂度为$O(n\log n)$,调用次数为$1+\left\lceil\log_2n\right\rceil$

然后是第二个部分分(subtask3,4):图是一棵树

如果我们能找出一条在$S\rightarrow T$最短路上的边,那么删掉这条边后对两棵树套用上面的算法即可

要找到任意一条这样的边,还是得二分,二分边的编号,二分到$[l,r]$时把$[1,mid]$的边设为$B$,把$[mid+1,n-1]$的边设为$A$,如果最短路没有变化,那么这条边在$[mid+1,r]$,否则在$[l,mid]$,于是时间复杂度为$O(n\log_2n)$,调用次数为$1+\left\lceil\log_2n\right\rceil+2\left\lceil\log_2\frac n2\right\rceil$

然后是一般情况(subtask5,6)

我们同样想找到一条在$S\rightarrow T$的任意一条最短路上的边,还是得二分边的编号,一开始把所有边设为$A$,二分到$[l,r]$时先把$[l,mid]$设为$B$,查询最短路,如果最短路变化了,那么$[l,mid]$中一定有这样的边,于是先把$[l,mid]$设回$A$,再去$[l,mid]$中寻找答案,否则它就在$[mid+1,r]$了

假设我们找出来的边是$(x,y)$,我们用这条边构造两个不相交的集合$S_1,S_2$(以下的距离都是边权为$1$的距离)

如果一个点$u$满足$dis_{u,x}<dis_{u,y}$,那么$u\in S_1$,如果$u$满足$dis_{u,x}\gt dis_{u,y}$,那么$u\in S_2$

在$S_1$中以$x$为根构造bfs树,在$S_2$中以$y$为根构造bfs树,那么$S\rightarrow T$一定存在一条最短路是只经过树边和$(x,y)$的

将非树边设为$B$,将树边和$(x,y)$设为$A$,那么接下来要做的事情就和第二个部分分的最后一步一样了

总时间复杂度$O\left(m(\log m+\log n)\right)$,调用次数为$1+\left\lceil\log_2m\right\rceil+2\left\lceil\log_2\frac n2\right\rceil$,刚好是$50$,但官方数据好像并没有卡满...

神仙图论题...

#include"highway.h"
#include<vector>
#include<algorithm>
#include<string.h>
using namespace std;
typedef long long ll;
const int inf=2147483647;
int abs(int x){return x>0?x:-x;}
int h[90010],nex[260010],to[260010],id[260010],M,n,m;
void add(int a,int b,int c){
	M++;
	to[M]=b;
	id[M]=c;
	nex[M]=h[a];
	h[a]=M;
}
int q[90010],d1[90010],d2[90010];
void getdis(int*d,int x){
	int head,tail,i;
	for(i=1;i<=n;i++)d[i]=inf;
	head=tail=1;
	q[1]=x;
	d[x]=0;
	while(head<=tail){
		x=q[head++];
		for(i=h[x];i;i=nex[i]){
			if(d[x]+1<d[to[i]]){
				d[to[i]]=d[x]+1;
				q[++tail]=to[i];
			}
		}
	}
}
vector<int>u,v,w;
int fa[90010],bfn[90010];
bool t1[260010],t2[260010];
void bfs(int x,bool*t){
	int head,tail,i;
	head=tail=1;
	q[1]=x;
	M=0;
	while(head<=tail){
		x=q[head++];
		bfn[x]=++M;
		for(i=h[x];i;i=nex[i]){
			if(to[i]!=fa[x]&&t[i]){
				fa[to[i]]=x;
				q[++tail]=to[i];
			}
		}
	}
}
ll dis;
int solve(int x,int y,bool*t){
	memset(fa,0,sizeof(fa));
	memset(bfn,0,sizeof(bfn));
	int l,r,mid,ans,i;
	fa[y]=x;
	bfs(y,t);
	l=1;
	r=M;
	ans=0;
	while(l<=r){
		mid=(l+r)>>1;
		for(i=0;i<m;i++){
			x=u[i];
			y=v[i];
			if(!t1[i*2+1]&&!t2[i*2+1])
				w[i]=1;
			else if(!t[i*2+1])
				w[i]=0;
			else{
				if(fa[x]==y)swap(x,y);
				w[i]=bfn[y]>mid;
			}
		}
		if(ask(w)==dis){
			ans=mid;
			r=mid-1;
		}else
			l=mid+1;
	}
	for(i=1;i<=n;i++){
		if(bfn[i]==ans)break;
	}
	return i;
}
int sfa[90010];
int get(int x){return x==sfa[x]?x:(sfa[x]=get(sfa[x]));}
void buildt1(int x){
	int head,tail,i;
	for(i=1;i<=n;i++)sfa[i]=i;
	head=tail=1;
	q[1]=x;
	while(head<=tail){
		x=q[head++];
		for(i=h[x];i;i=nex[i]){
			if(d1[x]<d2[x]&&d1[to[i]]<d2[to[i]]&&d1[x]!=d1[to[i]]&&get(x)!=get(to[i])){
				t1[i]=t1[((i-1)^1)+1]=1;
				sfa[get(to[i])]=get(x);
				q[++tail]=to[i];
			}
		}
	}
}
void buildt2(int x){
	int head,tail,i;
	for(i=1;i<=n;i++)sfa[i]=i;
	head=tail=1;
	q[1]=x;
	while(head<=tail){
		x=q[head++];
		for(i=h[x];i;i=nex[i]){
			if(d1[x]>d2[x]&&d1[to[i]]>d2[to[i]]&&d2[x]!=d2[to[i]]&&get(x)!=get(to[i])){
				t2[i]=t2[((i-1)^1)+1]=1;
				sfa[get(to[i])]=get(x);
				q[++tail]=to[i];
			}
		}
	}
}
void find_pair(int n,vector<int>u,vector<int>v,int A,int B){
	int i,x,y,l,r,mid;
	m=u.size();
	w.resize(m);
	for(i=0;i<m;i++){
		u[i]++;
		v[i]++;
		add(u[i],v[i],i);
		add(v[i],u[i],i);
	}
	::n=n;
	::u=u;
	::v=v;
	for(i=0;i<m;i++)w[i]=0;
	dis=ask(w);
	l=0;
	r=m-1;
	while(l<r){
		mid=(l+r)>>1;
		for(i=l;i<=mid;i++)w[i]=1;
		if(ask(w)!=dis){
			for(i=l;i<=mid;i++)w[i]=0;
			r=mid;
		}else
			l=mid+1;
	}
	x=u[l];
	y=v[l];
	getdis(d1,x);
	getdis(d2,y);
	buildt1(x);
	buildt2(y);
	t1[l*2+1]=t1[l*2+2]=t2[l*2+1]=t2[l*2+2]=1;
	answer(solve(x,y,t2)-1,solve(y,x,t1)-1);
}

转载于:https://www.cnblogs.com/jefflyy/p/9674412.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值