暑假练习:Uva437

题目链接:uva437

解题思路:只有长和宽均小于下面立方体的长和宽的方块才可以放在上面。因此这是一个有序对,可以抽象成有向无环图来做。运用DAG求最长路算法来求。其中用dp[i][j]来表示第i种方块以第j种边为高时的最高高度。

代码实例:

#include<iostream>
#include<cstring>
using namespace std;
struct Node{
	int a[3];
}tw[35];
int dp[35][3];
int G[35][3][35][3];
int n;
int DAG_dp(int f,int s){
	int& ans = dp[f][s];
	if(dp[f][s])	return dp[f][s];
	dp[f][s] = 0;
	int idx = f,idh = s;
	for(int i = 0;i < n;i++)
		for(int j = 0;j < 3;j++)
			if(G[idx][idh][i][j]){
				ans = max(DAG_dp(i,j),ans);
			}
	ans += tw[idx].a[idh];
	return ans;
	
}
int main()
{
	int a,b,c;
	int kcase = 0;
	while(cin >> n && n){
		memset(dp,0,sizeof(dp));
		memset(G,0,sizeof(G));
		for(int i = 0;i < n;i++){
			cin >> tw[i].a[0] >> tw[i].a[1] >> tw[i].a[2];
		}
		for(int i = 0;i < n;i++)
			for(int j = 0;j < 3;++j)
				for(int k = 0;k < n;k++)
					for(int z = 0;z<3;z++){
						if((tw[i].a[(j+2)%3] < tw[k].a[(z+2)%3] && tw[i].a[(j+1)%3] < tw[k].a[(z+1)%3])
						|| (tw[i].a[(j+1)%3] < tw[k].a[(z+2)%3] && tw[i].a[(j+2)%3] < tw[k].a[(z+1)%3]))
							G[i][j][k][z] = 1;
					}
		int maxh = -1;
		for(int i = 0;i < n;i++)
			for(int j = 0;j < 3;++j)
		//	cout << DAG_dp(i,j) << " ";
				 maxh = max(DAG_dp(i,j),maxh);
		cout << "Case " << ++kcase << ": maximum height = " << maxh << endl;
	}
	return 0;
}

 

转载于:https://www.cnblogs.com/long98/p/10352225.html

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值