COCI2015/2016 CONTEST#4 简易题解

T1:YODA
题意:给出两个数,要求把两个数对撞,每一个十进制位上的大的留在原数,如果相同,两个都留在原数,最后输出两个对撞后的原数。
思路:直接模拟即可,两个数每一次都/10%10,比较是否合法。

#include<cstdio>
#include<cstring>
char s1[20], s2[20];
int main() {
    scanf("%s%s", s1, s2);
    int N = strlen(s1), M = strlen(s2);
    for(int i = N-1, j = M-1; i >= 0 && j >= 0; -- i, -- j) {
        if(s1[i] > s2[j]) s2[j] = 0;
        else if(s1[i] < s2[j]) s1[i] = 0;
    }
    int n = -1, m = -1;
    for(int i = 0; i < N; ++ i)
        if(s1[i]) {
            if(n == -1) n = 0;
            n = n * 10 + s1[i] - '0';
        }
    for(int i = 0; i < M; ++ i)
        if(s2[i]) {
            if(m == -1) m = 0;
            m = m * 10 + s2[i] - '0';
        }
    if(n == -1) puts("YODA");
    else printf("%d\n", n);
    if(m == -1) puts("YODA");
    else printf("%d\n", m);
    return 0;
}

T2:HAN
题意:恶心模拟
思路:步数%26并作出相应操作。

#include<cstdio>
#include<algorithm>
using namespace std;
#define LL long long
int n, f, cur, st;
int cnt[30];
char c;
inline void GET(int &n) {
    do c = getchar(); while('0' > c || c > '9'); n = 0;
    while('0' <= c && c <= '9') {n = n*10+c-'0'; c = getchar();}
}
int main () {
    int t1, t2; f = 1; cur = 0;
    char op[10];
    GET(n);
    for(int i = 1; i <= n; ++ i) {
        scanf("%s", op);
        if(op[0] == 'S') {
            GET(t1);
            if(t1 - st >= 26) while(cur) { cur = ((cur + f) % 26 + 26) % 26, ++ st; ++ cnt[cur];}
            for(int i = 0; i < 26; ++ i) cnt[i] += (t1 - st) / 26;
            st += (t1 - st)/26*26;
            for(; st < t1; ++ st) {
                cur = ((cur + f) % 26 + 26) % 26;
                ++ cnt[cur];
            }
            f *= -1; st = t1;
        }
        else {
            GET(t1); scanf("%s", op); t2 = (op[0] - 'a' + 1)%26;
            if(t1 - st >= 26) while(cur) { cur = ((cur + f) % 26 + 26) % 26, ++ st; ++ cnt[cur];}
            for(int i = 0; i < 26; ++ i) cnt[i] += (t1 - st) / 26; st += (t1 - st)/26*26;
            for(; st < t1; ++ st) {
                cur = ((cur + f) % 26 + 26) % 26;
                ++ cnt[cur];
            }
            st = t1;
            printf("%d\n", cnt[t2]);
        }
    }
    return 0;
}

T3:DEATHSTAR
题意:给你一个矩阵 第(i,j)表示Ai&Aj (&表示按位与(bitwise and))求数列{An}
思路:想想或运算,你知道了吗?

#include<cstdio>
int a[1005][1005], n;
int arr[1005];
char c;
inline void GET(int &n) {
    do c = getchar(); while('0' > c || c > '9'); n = 0;
    while('0' <= c && c <= '9') {n = n*10+c-'0'; c = getchar();}
}
int main () {
    GET(n);
    for(int i = 1; i <= n; ++ i)
        for(int j = 1; j <= n; ++ j) {
            GET(a[i][j]);
            arr[i] |= a[i][j];
            arr[j] |= a[i][j];
        }
    printf("%d", arr[1]);
    for(int i = 2; i <= n; ++ i)
        printf(" %d", arr[i]);
    return 0;
}

T4:HEWBACCA
题意:给你一个完全K叉树,求两点间的距离。
思路:因为是完全K叉数,那么暴力爬树就是完全没有问题的了(1叉树需要特判)。

#include<cstdio>
#include<algorithm>
using namespace std;
#define LL long long
long long p[100], n, m, k, q;
char c;
inline void GET(LL &n) {
    do c = getchar(); while('0' > c || c > '9'); n = 0;
    while('0' <= c && c <= '9') {n = n*10+c-'0'; c = getchar();}
}
LL fa(LL x) {
    int t = lower_bound(p+1, p+q+1, x) - p;
    LL o = x - p[t-1];
    o = (o+k-1)/k;
    return p[t-2]+o;
}
int dep(LL x) {
    return lower_bound(p, p+q+1, x) - p;   //其实这里可以直接写 "return x;"。因为编号适合深度有关的……我当时SB了
}
int main () {
    GET(n); GET(k); GET(m);
    p[2] = 1; LL t1, t2;
    if(k != 1) {
        for(q = 3; n / p[q-1] > k; ++ q) p[q] = p[q-1] * k;
        for(int i = 1; i <= q; ++ i) p[i] += p[i-1];
        p[q] = n;
    }
    for(int i = 1; i <= m; ++ i) {
        int tot = 0;
        GET(t1); GET(t2);
        if(t1 > t2) swap(t1, t2);
        if(k == 1) printf("%I64d\n", t2 - t1);
        else {
            while(t1 != t2) {
                if(dep(t1) < dep(t2)) swap(t1, t2);
                t1 = fa(t1); ++ tot;
            }
            printf("%d\n", tot);
        }
    }
    return 0;
}

暂时到这里了,我并不知道T5、T6怎么做……等官方题解吧。

转载于:https://www.cnblogs.com/geng4512/p/5296881.html

### 回答1: 题目描述: Eko 有一排树,每棵树的高度不同。他想要砍掉一些树,使得剩下的树的高度都相同。他希望砍掉的树的高度尽可能地少,你能帮他算出最少要砍掉多少棵树吗? 输入格式: 第一行包含两个整数 N 和 M,分别表示树的数量和 Eko 希望的树的高度。 第二行包含 N 个整数,表示每棵树的高度。 输出格式: 输出一个整数,表示最少要砍掉的树的数量。 输入样例: 9 5 2 3 4 7 8 9 10 11 12 输出样例: 3 解题思路: 二分答案 首先,我们可以发现,如果我们知道了 Eko 希望的树的高度,那么我们就可以计算出砍掉多少棵树。 具体来说,我们可以遍历每棵树,如果它的高度大于 Eko 希望的树的高度,那么就将它砍掉,否则就保留它。 然后,我们可以使用二分答案的方法来确定 Eko 希望的树的高度。 具体来说,我们可以将树的高度排序,然后二分一个可能的 Eko 希望的树的高度,然后计算砍掉多少棵树,如果砍掉的树的数量小于等于 M,那么说明 Eko 希望的树的高度可能更小,否则说明 Eko 希望的树的高度可能更大。 最后,我们可以得到最少要砍掉的树的数量。 时间复杂度:O(NlogN)。 参考代码: ### 回答2: 这道题目是一道模拟题,需要模拟机器人的移动过程以及得出最终机器人的位置和朝向。首先需要明确机器人的起始位置以及朝向,其次需要读取输入的指令,根据指令逐步移动机器人,并顺便判断是否会越界或者碰到障碍物。最后输出最终机器人的位置和朝向。 在本题中,需要按照从西向东、从北向南、从东向西、从南向北的顺序判断机器人的朝向。为了方便表述,我把机器人的朝向表示为0、1、2、3,分别代表从西向东、从北向南、从东向西、从南向北。 具体地说,机器人按照指令逐步移动时需要分情况讨论,比如: 1.当前机器人朝向为0,即从西向东: 若指令为F,则x坐标+1,但需要判断是否越界或者碰到障碍物。 若指令为L,则朝向变为3。 若指令为R,则朝向变为1。 2.当前机器人朝向为1,即从北向南: 若指令为F,则y坐标-1,但需要判断是否越界或者碰到障碍物。 若指令为L,则朝向变为0。 若指令为R,则朝向变为2。 3.当前机器人朝向为2,即从东向西: 若指令为F,则x坐标-1,但需要判断是否越界或者碰到障碍物。 若指令为L,则朝向变为1。 若指令为R,则朝向变为3。 4.当前机器人朝向为3,即从南向北: 若指令为F,则y坐标+1,但需要判断是否越界或者碰到障碍物。 若指令为L,则朝向变为2。 若指令为R,则朝向变为0。 最后输出最终机器人的位置和朝向即可。 在编写程序时需要注意判断边界和障碍物,以及要用scanf读取输入,不要用C++的cin,否则会TLE。此外,由于本题没有给出边界和障碍物,需要自己设置。最后,本题的思路不难,但是需要认真仔细地处理各种情况,多测试几组数据找出程序的漏洞,这样才能通过本题。 ### 回答3: 本题为一道组合数学题,需要运用排列组合知识进行分析。 题目要求将n个方块填入3*3的网格中,每个方块可以是红色、绿色或蓝色的一个。要求每行、每列和对角线上的方块颜色都不相同。求方案总数。 首先考虑对第一行进行颜色选取。由于第一行每个位置的颜色都不影响其他行和列,故第一行的颜色选取不影响总方案数。所以假设第一行颜色已经确定,考虑第二行的颜色选取。第二行中各位置的颜色受到第一行的限制,只有第一行某位置颜色的补集才能选取。例如,若第一行第一个位置是红色,那么第二行第一个位置不能选取红色。因为每行颜色不能相同,所以第二行受到第一行限制的位置只有3个。第三行同理,由于前两行的限制,只有2个位置可选。做完颜色选取后,再将每行的方块进行排列,此时我们可以使用错排公式得到方案数: D(n) = n!(1 - 1/1! + 1/2! - 1/3! + ... + (-1)^(n)/n!) 最终,方案总数即为每个第一行颜色选取方法下的错排方案数之和。按题意枚举第一行的颜色,就可以得到最终的方案总数了。 总结一下,本题所需要的知识点为:错排公式、颜色限制对组合数的影响、暴力枚举法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值