题意:从若干个S点出发到达T点,稍有不同的是,要区分该点落脚有左脚和右脚两种情况。
解法:从题目中给定的S出发,左脚和右脚都可以踏上去,全部入队列后再spfa即可。做了这题发现使用spfa来处理多源点时连超级源点都不用建立了。
代码如下:
#include <iostream> #include <cstring> #include <cstdlib> #include <cstdio> #include <queue> using namespace std; const int INF = 0x3f3f3f3f; int N, M, dis[2][65][35]; char G[65][35], vis[2][65][35]; struct Point { int x, y; Point(int x_, int y_) {x = x_, y = y_;} Point(){} }; vector<Point>S; bool judge(int lx, int ly, int rx, int ry) { if (lx < 1 || rx < 1 || lx > N || rx > N || ly < 1 || ry < 1 || ly > M || ry > M) return false; if (ly < ry && abs(lx-rx) + abs(ly-ry) <= 3) return true; return false; } int ldir[9][2] = {{0,-1},{0,-2},{0,-3},{1,-1},{1,-2},{2,-1},{-1,-1},{-1,-2},{-2,-1}}; int rdir[9][2] = {{0,1},{0,2},{0,3},{1,1},{1,2},{2,1},{-1,1},{-1,2},{-2,1}}; void spfa() { Point v; memset(vis, 0, sizeof (vis)); memset(dis, 0x3f, sizeof (dis)); queue<Point>q; for (int i = 0; i != S.size(); ++i) { q.push(S[i]); dis[0][S[i].x][S[i].y] = 0; dis[1][S[i].x][S[i].y] = 0; vis[0][S[i].x][S[i].y] = 1; vis[1][S[i].x][S[i].y] = 1; } while (!q.empty()) { v = q.front(); q.pop(); // 首先是踏左脚 if (vis[1][v.x][v.y]) { // 如果右脚在队列之中 vis[1][v.x][v.y] = 0; for (int k = 0; k < 9; ++k) { int i = v.x + ldir[k][0], j = v.y + ldir[k][1]; if (judge(i, j, v.x, v.y) && G[i][j] != 'X') { int ti = (G[i][j] == 'S' || G[i][j] == 'T') ? 0 : G[i][j] - '0'; if (dis[0][i][j] > dis[1][v.x][v.y] + ti) { dis[0][i][j] = dis[1][v.x][v.y] + ti; if (!vis[0][i][j]) { q.push(Point(i, j)); vis[0][i][j] = 1; } } } } } // 如果是踏右脚 if (vis[0][v.x][v.y]) { vis[0][v.x][v.y] = 0; for (int k = 0; k < 9; ++k) { int i = v.x + rdir[k][0], j = v.y + rdir[k][1]; if (judge(v.x, v.y, i, j) && G[i][j] != 'X') { int ti = (G[i][j] == 'S' || G[i][j] == 'T') ? 0 : G[i][j] - '0'; if (dis[1][i][j] > dis[0][v.x][v.y] + ti) { dis[1][i][j] = dis[0][v.x][v.y] + ti; if (!vis[1][i][j]) { q.push(Point(i, j)); vis[1][i][j] = 1; } } } } } } } int main() { while (cin >> M >> N, N|M) { getchar(); S.clear(); for (int i = 1; i <= N; ++i) { for (int j = 1; j <= M; ++j) { scanf("%c%*c", &G[i][j]); if (G[i][j] == 'S') { S.push_back(Point(i, j)); } } } spfa(); int Min = INF; for (int i = 1; i <= N; ++i) { for (int j = 1; j <= M; ++j) { if (G[i][j] == 'T') { Min = min(Min, min(dis[0][i][j], dis[1][i][j])); } } } if (Min != INF) { printf("%d\n", Min); } else printf("-1\n"); } return 0; }