权重随机算法的java实现

一、概述

  平时,经常会遇到权重随机算法,从不同权重的N个元素中随机选择一个,并使得总体选择结果是按照权重分布的。如广告投放、负载均衡等。

  如有4个元素A、B、C、D,权重分别为1、2、3、4,随机结果中A:B:C:D的比例要为1:2:3:4。

  总体思路:累加每个元素的权重A(1)-B(3)-C(6)-D(10),则4个元素的的权重管辖区间分别为[0,1)、[1,3)、[3,6)、[6,10)。然后随机出一个[0,10)之间的随机数。落在哪个区间,则该区间之后的元素即为按权重命中的元素。

  实现方法

利用TreeMap,则构造出的一个树为:
    B(3)
    /      \
        /         \
     A(1)     D(10)
               /
             /
         C(6)

然后,利用treemap.tailMap().firstKey()即可找到目标元素。

当然,也可以利用数组+二分查找来实现。

二、源码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
package  com.xxx.utils;
 
import  com.google.common.base.Preconditions;
import  org.apache.commons.math3.util.Pair;
import  org.slf4j.Logger;
import  org.slf4j.LoggerFactory;
 
import  java.util.List;
import  java.util.SortedMap;
import  java.util.TreeMap;
 
 
public  class  WeightRandom<K,V  extends  Number> {
     private  TreeMap<Double, K> weightMap =  new  TreeMap<Double, K>();
     private  static  final  Logger logger = LoggerFactory.getLogger(WeightRandom. class );
 
     public  WeightRandom(List<Pair<K, V>> list) {
         Preconditions.checkNotNull(list,  "list can NOT be null!" );
         for  (Pair<K, V> pair : list) {
             double  lastWeight =  this .weightMap.size() ==  0  0  this .weightMap.lastKey().doubleValue(); //统一转为double
             this .weightMap.put(pair.getValue().doubleValue() + lastWeight, pair.getKey()); //权重累加
         }
     }
 
     public  K random() {
         double  randomWeight =  this .weightMap.lastKey() * Math.random();
         SortedMap<Double, K> tailMap =  this .weightMap.tailMap(randomWeight,  false );
         return  this .weightMap.get(tailMap.firstKey());
     }
 
}

  

  

三、性能

4个元素A、B、C、D,其权重分别为1、2、3、4,运行1亿次,结果如下:

元素命中次数误差率
A100042960.0430%
B199911320.0443%
C300008820.0029%
D400036900.0092%

从结果,可以看出,准确率在99.95%以上。

 

四、另一种实现

利用B+树的原理。叶子结点存放元素,非叶子结点用于索引。非叶子结点有两个属性,分别保存左右子树的累加权重。如下图:

看到这个图,聪明的你应该知道怎么随机了吧。

此方法的优点是:更改一个元素,只须修改该元素到根结点那半部分的权值即可。

end

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值