自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(254)
  • 收藏
  • 关注

原创 模型不达标调整

稳健性检验通俗的讲,就是改变某个特定的参数,进行重复的实验,来观察实证结果是否随着参数设定的改变而发生变化,如果改变参数设定以后,结果发现符号和显著性发生了改变,说明不是稳健性的,需要寻找问题的所在。一般根据自己文章的具体情况选择稳健性检验 ① 从数据出发,根据不同的标准调整分类,检验结果是否依然显著 ② 从变量出发,从其他的变量替换,如:研发金额投入可以使用研发项目数量衡量 ③ 从计量方法出发,可以用OLS等进行回归,看结果是否依然显著。将重复指标或者质量差的指标进行删除,也是模型调整的一种方式。

2022-12-29 14:35:14 228

原创 Moran指数分析

Moran指数(莫兰指数)是研究空间关系的一种相关系数值,比如研究中国31省市GDP之间是否具有空间相关关系。Moran指数通常分为两种,分别是全局Moran指数和local局部Moran指数。全局Moran指数用于分析整体上是否存在空间相关关系,如果全局Moran指数呈现出显著性,接着可进一步深入分析局部Moran指数了解细节性关系情况等。Moran指数的计算上需要提供两项数据,分别是分析项数据,比如中国2021年GDP数据。

2022-12-29 14:20:17 335

原创 零膨胀泊松回归案例分析

计数研究模型中,常用泊松回归模型,但泊松回归模型理论上是要求平均值与标准差相等,如果不满足,则可使用负二项回归模型在实际研究中,会出现一种情况即因变量为计数变量,并且该变量包括非常多的数字0,当出现此种情况下,此时可考虑使用零膨胀泊松回归模型,也或者零膨胀负二项回归模型。零膨胀模型的特点是将模型分为两阶段进行(即设置为混合分布模型),第1阶段(零膨胀阶段)为计数变量是否为0的拟合,SPSSAU默认使用二元logit模型进行拟合,第2阶段为泊松分布模型拟合。零膨胀泊松回归模型如下所示:正在上传…

2022-12-29 12:28:00 233

原创 零膨胀负二项回归案例分析

计数研究模型中,常用泊松回归模型,但泊松回归模型理论上是要求平均值与标准差相等,如果不满足,则可使用负二项回归模型,负二项回归放宽了平均值=标准差这一理论假定。在实际研究中,会出现一种情况即因变量为计数变量,并且该变量包括非常多的数字0,当出现此种情况下,此时可考虑使用零膨胀负二项回归模型。零膨胀模型的特点是将模型分为两阶段进行(即设置为混合分布模型),第1阶段(零膨胀阶段)为计数变量是否为0的拟合,SPSSAU默认使用二元logit模型进行拟合,第2阶段为负二项分布模型拟合。

2022-12-29 12:14:09 193 2

原创 联合分析案全流程分析

联合分析(conjoint analysis)是一种研究消费者产品选择偏好情况的多元统计分析方法。比如消费者对于手机产品的偏好,对于电脑产品的偏好,也或者消费者对于汽车产品的偏好情况等。

2022-12-29 12:00:13 160

原创 多维尺度MDS案例分析

多维尺度(multidimensional scaling, MDS),是一种将研究对象之间距离或者不相似度的直观展示,较为典型的研究对象是地理位置,当然也可以是观点、颜色等任意各类实体或抽象概念,比如茶的口味不相似情况。多维尺度的目的是将距离进行可视化展示。多维尺度MDS通常分为两类,分别是度量MDS(metric multidimensional scaling, mMDS)和非度量MDS(nonmetric multidimensional scaling, nMDS)。

2022-12-29 11:32:07 142

原创 SBM模型分析全流程

数据包络分析DEA时,其研究投入产出效率情况,并且其假定投入和产出之间存在单调线性关系,其为一种线性规划技术来确定DMU相对效率的方法。但有时候会多出下‘非期望产出’,就是不希望有它产出,比如资金投入、教育投入换来了GDP上升和人口素质提升,但同时可能带来环境污染这个非期望产出项。在此种情况时,DEA模型则不满足单调线性关系要求。此时则需要使用非期望SBM模型,该模型由Tone(2001)提出。

2022-12-29 11:17:22 184

原创 malmquist指数案例分析

传统的DEA模型可以反应静态的投入产出效率情况,但如果是面板数据,则需要使用malmquist指数进行研究。malmquist指数可以分析从t期到t+1期的效率变化情况。Malmquist指数可分解为技术效率(EC)和技术进步(TC),技术效率(EC)可进一步分解为纯技术效率(PEC)和规模效率(SEC);全要素生产率(TFP)=技术效率(EC)* 技术进步(TC);技术效率(EC)=纯技术效率(PEC)* 规模效率(SEC)。1。

2022-12-29 11:13:05 208

原创 Fisher卡方全流程汇总

通常情况下:如果总样本量>40且期望频数值全部均大于5时,一般使用pearshon卡方值,如果总样本量大于40,但出现期望频数小于5的单元格时,可优先使用连续校正卡方,也或者使用fisher卡方值,如果总样本量小于40,也或者出现期望频数小于1的单元格时,此时建议使用fisher卡方检验。上表格展示各单元格的期望频数,上表格可以看到,非预防组阳性的期望频数为3.0

2022-12-29 10:41:01 125

原创 dagum基尼系数分析全流程

上表格可以看到,从组内基尼系数Gw来看,整体上,华东地区、华北地区和华南地区的组内基尼系数值较大,意味着华东地区、华北地区和华南这3个区域,他们内部各省份之间的收入不均匀现象较为严重。从上表可知:整体上看,总体基尼系数有着一定的下降趋势,但是下降趋势不明显,2012年为0.227,2021年为0.215,以及整体对比可知,收不均的主要来源为组间GB,近10年来组间贡献率值均大于60%,相对来看组内贡献率值约在12%左右。如果不放入Group项,则此时组间Gb为0,更不会有两两组别之间的PK。

2022-12-29 10:27:37 164

原创 量表如何分析?

希望将分值反向处理即变成:1分代表非常不同意,2分代表不同意,3分代表中立,4分代表同意,5分代表非常同意(分值越高,代表越同意)。李克特量表的尺度形式有多种,我们常见是五级量表,即五个答项:"非常同意"、"同意"、"不一定"、"不同意"、"非常不同意"五种回答,分别记为1,2,3,4,5,每个被调查者的态度总分就是他对各道题的回答所的分数的加总,这一总分可说明他的态度强弱或她在这一量表上的不同状态。李克特量表是最常用的量表,是由美国社会心理学家李克特于1932年在原有的总加量表基础上改进而成的。

2022-11-29 15:44:12 1482

原创 论文指标评价体系及权重计算

上述三种方法中,熵值法计算准则层权重这种方法使用较少,原因很可能在于因素层计算权重时,也是利用熵值法进行计算,准则层和因素层都在利用完全相同的数据,并且基于权重计算原理均是熵信息,因而使用较少,从分析角度可以如此进行。统设定主成分个数为5个(准则层指标为5个),并且从主成分结果上确保准则层指标与因素层指标之间有着良好对应关系后,最后利用 “ 方差解释率 ”进行权重计算,得到准则层指标权重。计算因素层指标权重较多,该论文中共有5个准则层指标,因而分别进行5次分析,分别计算出因素层的所有指标权重值。

2022-11-29 15:28:35 597

原创 结构方程模型调整

模型拆分法是指将复杂的结构方程模型进行分拆,分拆成多个小的结构方程模型,此处理可将模型简化,从而更容易让模型达标,通常情况下越为复杂的模型其要求越高,越简单的模型越易达标。MI修正指标表示固定或约束参数时,其可为模型带来的预期卡方减少量,因而从原理上该修正可对卡方自由度这个重要的评价指标带来帮助,理论上对其它指标的帮助通常不会太大,但从经验角度上看,结合MI指标进行模型修正后,通常各项指标均有一定改善,只是相对来看,卡方自由度指标的减少较为明显。上述中的四大原因时,不正确使用和数据质量差不在考虑范畴。

2022-11-29 14:57:07 684

原创 面板模型进行熵值法分析

如果进行量纲化处理,比如归一化处理,其意味着将数据全部压缩在0~1之间,此时所有指标的数据量纲完全一致,即每个指标数据的信息熵的度量范围也完全一致。熵值法(熵权法)是一种研究指标权重的研究方法,比如有5个指标,分别为指标1到指标5,并且有很多样本(比如100个样本),即100行*5列数据,此时研究该5个指标的权重分别是多少。比如上表格,分别做5次分析,每次均得到5个指标的权重,然后整理后,再对某个指标下的几个权重,比如表格中第2列5个数字求平均得到41.34%,即为最终指标1权重。

2022-11-29 14:53:36 337

原创 马尔可夫预测案例分析

根据已经有数据进行预测的研究方法有很多,包括arima模型、指数平滑法、灰色预测等,本文针对马尔可夫预测进行阐述。比如研究中国移动,中国联通和中国电信三家运营商,他们的用户可以互相携号转网,已经当前3家运营商的市场份额,而且也能测试出用户转网的可能性,那么将来3家运营商的市场份额情况如何,即利用当前已知的两项数据,分别是当前的市场份额、用户接下来使用运营商的可能性(即转移概率矩阵),则可预测将来3家运营商的市场份额情况。上述中提及‘3家运营商’,马尔可夫预测模型中称其为‘3种状态’。

2022-11-29 13:49:09 578 1

原创 使用SPSSAU进行Roc联合诊断

思想上,如何将‘4个指标’合并成一个,通常是使用二元logit回归,将4个指标作为X,将‘低出生体重儿’作为Y进行二元logit回归,并且得到‘预测值’,该‘预测值’即为4个指标的整体汇总指标值,然后将该’预测值‘作为检验变量X,然后将’低出生体重儿’作为状态变量Y进行分析即可。但是该4项指标合计在一起的时候,联合诊断效果如何,是否可以使用一个整体汇总指标来标识出‘4个指标’。比如‘低出生体重儿’的出生,受到产妇年龄,产妇体重,产妇在妊娠期间是否吸烟,是否患有高血压共4项指标的影响。2、SPSSAU操作。

2022-11-29 11:55:25 110

原创 交互作用的深入剖析

比如A因素为性别,B因素为区域,男性并且北方群体时身高如何,男性并且南方群体时身高如何,也或者女性并且北方群体时身高如何,女性并且南方群体时身高如何。接着后续进行分析时,切记,有5个哑变量(或5个交互项),以及通常使用ols线性回归进行交互作用分析,那么一定要少放1项(即参照项),至于是少放‘专科以下’,也或者‘博士’,由研究者决定,少放的该项即为参照项。哑变量乘积法时,将A因素进行哑变量处理,然后将得到的哑变量分别与B因素相乘,即得到交互项,至于后续分析方法,通常是使用ols线性回归。

2022-11-28 17:59:13 385

原创 多重共线性如何分析?

从上式可以看出,VIF若大于10其R方相对应也大于0.9,若VIF大于5其R方相对于大于0.8,如果存在这种现象,可以认为该自变量是其他自变量的近似线性组合,也就是说,在自变量之间存在高度相关的现象。岭回归分析是一种修正的最小二乘估计法,当自变量系统中存在多重共线性时,它可以提供一个有偏估计量,这个估计量虽有微小偏差,但它的精度却能大大高于无偏估计。构造一个新的变量,这一新变量是多重共线性变量的函数,然后用这个新的变量代替多重共线性的变量,但是要注意组合后的数据需要有实际意义否则模型不好解释。

2022-11-28 17:48:21 686

原创 Hosmer-Lemeshow检验(HL检验)

由表格中的回归系数可以看出,X2的回归系数为0.038,X3的回归系数为0.076,X4的回归系数为0.012,截距的回归系数为-9.897,所以模型公式为:ln(p/1-p)=-9.897 + 0.038*X2 + 0.076*X3 + 0.012*X4(其中p代表Y为1 的概率,1-p代表Y为0的概率)。通过在基于 F 检验的现有模型中添加或删除预测变量,执行变量选择。对于H-L检验,一般p值大于0.05,说明模型拟合良好,p

2022-11-28 17:43:44 536

原创 结构方程模型如何分析?

结构方程模型是被广泛认可的研究可观测变量与潜在变量,以及潜在变量之间关系的重要工具。结构方程模型包括两个基本模型,分别为测量模型和结构模型,测量模型由潜在变量、观测变量以及测量误差项组成,主要分析潜在变量与观测变量的共变效果。路径分析在于研究模型影响关系,用于对模型假设进行验证。比如下图的模型框架:希望研究工作条件,人际关系对于公司满意度的影响;同时还希望研究公司满意度和机会感知对于离职倾向的影响。路径有一共有4条(即4对影响关系),路径分析可以同时研究此4对影响关系。

2022-11-28 16:58:46 146

原创 问卷调查的数据如何分析?

一般在正式分析前,研究者常常需要构建模型框架,基于模型框架进行分析研究,例如数据分析、原理研究等等。那么如何构建基础的模型框架,以下以‘笔记本电脑购买意愿影响因素’来进行举例说明。​模型框架直观展示出‘笔记本电脑购买意愿影响因素’的对应关系,由模型可以看出研究的影响因素共包含四大类,其中包括‘产品’、‘价格’、‘性能’以及‘售后服务’,被影响的因素也就是因变量Y是购买意愿。模型框架在分析一开始就要理清思路,基于模型框架之后才有后面对应的数据搜集,数据分析等。

2022-11-28 16:54:18 596

原创 如何做方差分析?

本篇案例利用单因素方差分析进行研究4种饲料对猪体重增加的作用有无不同,首先对数据进行预判断,判断数据是否满足正态性,方差齐性,以及对数据分布趋势进行简单查看,发现数据满足方差分析前提,接着对方差结果进行说明,其中包括4个方面,分析后发现4种饲料对猪体重增加的作用存在不同。分析结束。更多干货请登录SPSSAU官网进行查看。

2022-10-28 10:34:46 636

原创 如何处理多重共线性问题

通过对数据进行简单查看,发现数据具有多重共线性所以对数据进行处理,处理的方式选择岭回归,对岭回归分模型效果和模型结果两个方面进行阐述,最后得到公式为:不良贷款(亿元)=-0.159 + 0.012*各项贷款余额(亿元) + 0.126*本年累积应收贷款(亿元) + 0.066*贷款项目个数 + 0.004*本年固定资产投资额(亿元)。各项贷款余额、本年累积应收贷款、贷款项目个数三个自变量p值均小于0.05,具有显著性差异,而本年固定资产投资额p值为0.418大于0.05,不具有统计学意义。

2022-10-28 10:32:51 960

原创 多选题分析汇总

最后分析选择不同选项是否有差异。13个样本中9个样本选择‘选项2’普及率为61.54%,是样本量选择最多的选项,其次是‘选项4’普及率为61.54%,然后是‘选项1’普及率占比是53.83%,最后是‘选项3’普及率为38.46%也是是样本量选择最少的选项。从图中可以看出‘B’和‘低’两个点挨在一起,‘D’和‘中’两个点挨在一起,‘A’、‘C’、‘F’和‘高’几个点挨着一起,所以可以说明低收入的人更偏好‘B’品牌的电脑,中收入的人更喜欢‘D’品牌电脑,高收入人群更偏好‘A’、‘C’和‘F’三种品牌的电脑。

2022-10-28 10:29:01 104

原创 量纲化处理汇总

但是量纲化有很多种方式,但具体应该使用哪一种方式,并没有固定的标准,而应该结合数据情况或者研究算法,选择最适合的量纲化处理方式,SPSSAU共提供12种量纲化处理方法,下面进行说明。量纲化有很多种处理方式,其中常见的处理为12种,SPSSAU均有提供,可以将12种方法分为两大类,一类为‘有实际意义的量纲处理’另一类为‘数理化的量纲处理’。使用‘有实际意义的量纲处理’即均值化,初值化,最小值化,最大值化,求和归一化,平方和归一化。在实际研究中有的指标是越小越好,此时为逆向指标,需要对逆向指标正向且量纲化。

2022-10-28 10:26:50 148

原创 关于信度分析的多种方法

以SPSSAU为例,信度分析的位置在【问卷研究】→【信度】图 1:信度分析位置。

2022-10-28 10:25:15 265

原创 关于信度分析的多种方法

以SPSSAU为例,信度分析的位置在【问卷研究】→【信度】图 1:信度分析位置。

2022-10-28 10:24:26 343

原创 写论文时,不知道如何检验正态分布?

直方图若呈现‘中间高,两边低,左右基本对称的钟形图’则基本服从正态分析,但是数据量过少等也可能影响结果导致很难呈现出标准的正态分布,如果是这种情况如果看见‘钟形’也可以可以接受的。针对上述几种方法,正态性检验最为严谨,但是实际数据由于样本量较少等原因,即使数据总体正态但统计检验出来也显示非正态,实用性没有图示法直观且接受性没有图示法高,所以在分析中常常图示法应用的比较多,如果在分析中数据严重不正态应该怎么办呢?Jarque-Bera检验中,p值小于0.05,所以模型显著,拒绝原假设,数据不服从正态分布。

2022-10-28 10:22:38 415

原创 毕业论文使用的卡方检验该如何分析?

有时,在研究中某个随机变量是否服从某种特定的分布是需要进行检验的。可以根据以往的经验或者实际的观测数据分布情况,推测总体可能服从某种分布函数F(x)。卡方检验就是这样一种用来检验给定的概率值下数据来自同一总体的无效假设方法。通常的卡方检验可以用来研究分析定类数据与定类数据之间的关系情况。在卡方检验中,通常检验的统计量 χ2 如下:其中A代表某个类别的观察频数,E代表基于H0计算出的期望频数,Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的期望频率。

2022-10-28 10:20:23 341

原创 毕业论文中的问卷如何做效度分析?

效度分析用于分析题是否可以有效的表达对应变量的概念信息,即分析量表题设计是否合理。在预测试和正式研究时均可以进行效度的分析,在绝大多数情况下,问卷研究会使用探索性因子分析进行结构效度分析,如果量表具有很强的权威性,那么不需要使用探索性因子分析进行结构效度分析,使用内容效度分析即可。那么效度包含哪些方法,应该怎么分析?接下来进行描述。效度类别可以分为四大类,其中包括内容效度、结构效度、区分效度以及收敛效度。

2022-10-28 10:17:41 786

原创 毕业论文中的数据分析无从下手?

最近有很多小伙伴已经开始准备毕业论文了,但是对于论文中数据如何进行分析,选择什么方法,怎样对结果说明无从下手,接下来小编将从模型框架的构建、模型框架的分析等方面进行说明。SPSSAU一般在正式分析前,研究者常常需要构建模型框架,基于模型框架进行分析研究,例如数据分析、原理研究等等。那么如何构建基础的模型框架,以下以‘笔记本电脑购买意愿影响因素’来进行举例说明。

2022-10-28 10:12:54 288

原创 双因素方差分析全流程汇总

就是通过检验各总体的是否相等来判断分类型自变量(定类变量)对数据型因变量(定量变量)是否有显著影响。方差分析一般分为单因素方差分析、双因素方差分析、三因素方差分析以及多因素方差分析。利用针对双因素方差分析举例说明:背景简单说明:研究性别和学历对产品的满意度是否有显著影响。

2022-10-27 18:59:17 346

原创 二项logistic回归案例分附操作析(数据)

现收集到银行贷款客户的个人、负债信息,以及曾经是否有过还贷违约的记录,试分析是否违约的相关因素,并构建模型用于贷款违约风险预测。(数据来源:SPSS自带案例数据集)数据上传SPSSAU后,在 “我的数据”中查看浏览原始数据,前5行数据如下:图1 “我的数据”查看浏览数据集。

2022-09-28 10:24:33 444

原创 考察交互的方差分析与简单效应分析(附带操作数据)

治疗缺铁性贫血病人12例,分4组给予基础疗法和甲乙两种药物治疗,一个月后观察红细胞增加数(百万/mm),试分析甲乙用药对治疗效果的影响。数据上传SPSSAU后,在 “我的数据”中查看浏览原始数据,部分数据如下:图1 “我的数据”查看浏览数据集。

2022-09-28 10:20:18 417

原创 手把手教你做时间序列图

本例子操作截图如下,关于‘差分设置’参数,默认是不进行差分,如果发现数据不平稳并且希望进行差分设置,此时可下拉选择1阶差分或2阶差分,以判别1阶差分或者2阶差分后的数据是否具有平稳性。通过观察数据是否沿着均值波动,并且没有明显的趋势情况,直观查看数据的平稳性,如果数据沿着某个均值波动并且没有明显的趋势性,则说明数据基本具有平稳性。时序图可用于直观展示随时间变化时某变量的数据变化情况,其通常用于某项分析前的直观判断,比如ARIMA模型前的数据平稳性判断,也或者VAR模型之前时时间序列数据的走势一致性判断等。

2022-09-27 15:39:03 565

原创 误差修正ECM模型怎么分析?

在宏观计量经济研究中,通常会使用VAR模型研究多个时间经济变量之间的数量关系情况,当数据不平稳但满足同阶单整时,通常使用协整检验研究长期均衡关系。与此同时,还可使用误差修正模型ECM(error correction model)研究短期波动情况。误差修正模型的使用通常是在协整检验后,协整检验研究长期均衡关系,误差修正模型ECM研究短期波动情况。1。

2022-09-27 15:38:44 531

原创 格兰杰因果检验如何分析?

在宏观计量经济研究中,通常会使用VAR模型研究多个时间经济变量之间的数量关系情况,VAR模型时可分析各计量变量之间的影响关系及影响方差解释情况,那么该影响关系是否具有意义,此时就需要使用格兰杰检验进行研究,通常情况下格兰杰检验与VAR模型一并使用。更多关于VAR模型的构建步骤,可参考下述或SPSSAU提供的VAR模型方法帮助说明。1。

2022-09-27 15:38:27 634

原创 协整检验该如何分析?

在宏观计量经济研究中,通常会使用VAR模型研究多个时间经济变量之间的数量关系情况,但是VAR模型要求数据无单位根或者同阶单整,如果无单位根通常可直接进行VAR模型构建,如果有单位根但是满足同阶单整,此时则可使用协整检验进行分析模型稳定性,通常协整关系后再建立VAR模型即可。与此同时,协整关系也是建立比如误差修正模型(SPSSAU中的ECM模型)的前提条件。如果研究变量存在协整关系则说明研究数据具有长期均衡关系。

2022-09-27 15:34:39 1273

原创 二项logistic回归案例分析(附操作数据)

现收集到银行贷款客户的个人、负债信息,以及曾经是否有过还贷违约的记录,试分析是否违约的相关因素,并构建模型用于贷款违约风险预测。(数据来源:SPSS自带案例数据集)数据上传SPSSAU后,在 “我的数据”中查看浏览原始数据,前5行数据如下:图1 “我的数据”查看浏览数据集。

2022-09-27 15:34:01 1800

原创 方差分析、T检验、卡方分析如何区分?

如果选项无法进行合并处理,比如研究不同专业样本对于变量的态度差异,研究样本的专业共分为市场营销、心理学、教育学和管理学四个专业,这四个专业之间为彼此独立无法进行合并组别,但是市场营销专业样本量仅为20并没有代表意义,因此可以考虑首先筛选出市场营销专业,即仅比较心理学,教育学和管理学这三个专业对某变量的差异性态度,当对比的组别超过三个,并且呈现出显著性差异时,可以考虑使用。根据X的不同,方差分析又可以进行细分。T检验共分为三种方法,分别是独立样本T检验,配对样本T检验和单样本T检验。

2022-09-02 15:01:55 166

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除