畅通工程
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 20399 Accepted Submission(s): 8737
Problem Description
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 );随后的 N
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
Output
对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。
Sample Input
3 3 1 2 1 1 3 2 2 3 4 1 3 2 3 2 0 100
Sample Output
3
?
Source
//此题把确定关系和判断关系放到一块求解;并查集实现Kruskal 算法 ;
1 #include <stdio.h> 2 #include <algorithm> 3 using namespace std ; 4 int father[1010] ; 5 struct vilage 6 { 7 int a, b, mon ; 8 } ; 9 vilage num[1010] ; 10 bool cmp(vilage a, vilage b) 11 { 12 return a. mon < b. mon ; 13 } 14 /* int find(int a) 15 { 16 while(a != father[a]) //递归压缩路径 ; 17 father[a] = find(father[a]) ; 18 return father[a] ; 19 } */ 20 int find(int a) // 非递归压缩路径 ; 21 { 22 int k, j, r ; 23 r = a ; 24 while(r != father[r]) //查找根节点 ; 25 r = father[r] ; //根节点记录 ; 26 k = a ; 27 while(k != r) //非递归压缩路径操作 ; 28 { 29 j = father[k] ; //j暂存父节点 ; 30 father[k] = r ; //father[a] 指向根节点 ; 31 k = j ; // 移向根节点 ; 32 } 33 return r ; 34 } 35 int mercy(int a, int b) // 36 { 37 int p = find(a) ; 38 int q = find(b) ; 39 if(find(p) != find(q)) 40 { 41 father[p] = q ; 42 return 1 ; 43 } 44 else 45 return 0 ; 46 } 47 int main() 48 { 49 int n, m, i, j ; 50 while(~scanf("%d %d",&n, &m), n) 51 { 52 for(i=1; i<=m; i++) 53 father[i] = i ; 54 for(j=1; j<=n; j++) 55 scanf("%d %d %d",&num[j].a, &num[j].b, &num[j].mon) ; 56 sort(num+1, num+n+1, cmp) ; 57 int total = 0 ; 58 for(i=1; i<=n; i++) 59 { 60 if(mercy(num[i].a, num[i].b)) 61 total += num[i].mon ; 62 } 63 int sum = -1 ; 64 for(i=1; i<=m; i++) 65 if(father[i] == i) 66 sum++ ; 67 68 if(!sum) 69 printf("%d\n", total) ; 70 else 71 printf("?\n") ; 72 } 73 return 0 ; 74 }
1 #include <cstdio> 2 #include <cstring> 3 #include <iostream> 4 #include <algorithm> 5 using namespace std; 6 int father[1010]; 7 int n, m; 8 struct rode 9 { 10 int a, b, m; 11 } num[1010]; 12 bool cmp(rode a, rode b) 13 { 14 return a.m < b.m; 15 } 16 void init() 17 { 18 for(int i = 1; i <= n; i++) 19 father[i] = i; 20 } 21 int find(int a) 22 { 23 if(a == father[a]) 24 return a; 25 else 26 return father[a] = find(father[a]); 27 } 28 bool mercy(int a, int b) 29 { 30 int q = find(a); 31 int p = find(b); 32 if(q != p) 33 { 34 father[q] = p; 35 return true; 36 } 37 else 38 return false; 39 } 40 int main() 41 { 42 while(~scanf("%d %d", &m, &n), m) 43 { 44 int u, v, w; 45 init(); 46 for(int i = 0; i < m; i++) 47 scanf("%d %d %d", &num[i].a, &num[i].b, &num[i].m); 48 sort(num, num + m, cmp); 49 int sum = 0; 50 for(int i = 0; i < m; i++) 51 { 52 if(mercy(num[i].a, num[i].b)) 53 sum += num[i].m; 54 } 55 int total = 0; 56 for(int i = 1; i <= n; i++) 57 if(father[i] == i) 58 total++; 59 if(total == 1) 60 printf("%d\n", sum); 61 else 62 printf("?\n"); 63 } 64 return 0; 65 }
//非递归路径压缩,应该差不多了 ;
1 int find(int a) // 非递归压缩路径 ; 2 { 3 int k, j, r ; 4 r = a ; 5 while(r != father[r]) //查找根节点 ; 6 r = father[r] ; //根节点记录 ; 7 /*k = a ; 8 while(k != r) //非递归压缩路径操作 ; 9 { 10 j = father[k] ; //j暂存父节点 ; 11 father[k] = r ; //father[a] 指向根节点 ; 12 k = j ; // 移到父节点 ; 13 }*/ 14 15 return r ; 16 }