格子取数问题 2013年搜狗的校招笔试题 专业程序代写

题目详情:有n*n个格子,每个格子里有正数或者0,从最左上角往最右下角走,只能向下和向右,一共走两次(即从左上角走到右下角走两趟),把所有经过的格子的数加起来,求最大值SUM,且两次如果经过同一个格子,则最后总和SUM中该格子的计数只加一次。
 
题目来源:此题是去年2013年搜狗的校招笔试题。

解法一、直接搜索

    @西芹_new,一共搜(2n-2)步,每一步有四种走法,考虑不相交等条件可以剪去很多枝,代码如下:
  1. //copyright@西芹_new 2013  
  2. #include "stdafx.h"    
  3. #include <iostream>    
  4. using namespace std;    
  5.     
  6. #define N 5    
  7. int map[5][5]={    
  8.     {2,0,8,0,2},    
  9.     {0,0,0,0,0},    
  10.     {0,3,2,0,0},    
  11.     {0,0,0,0,0},    
  12.     {2,0,8,0,2}};    
  13. int sumMax=0;    
  14. int p1x=0;    
  15. int p1y=0;    
  16. int p2x=0;    
  17. int p2y=0;    
  18. int curMax=0;    
  19.     
  20. void dfs( int index){    
  21.     if( index == 2*N-2){    
  22.         if( curMax>sumMax)    
  23.             sumMax = curMax;    
  24.         return;    
  25.     }    
  26.     
  27.     if( !(p1x==0 && p1y==0) && !(p2x==N-1 && p2y==N-1))    
  28.     {    
  29.         if( p1x>= p2x && p1y >= p2y )    
  30.             return;    
  31.     }    
  32.     
  33.     //right right    
  34.     if( p1x+1<N && p2x+1<N ){    
  35.         p1x++;p2x++;    
  36.         int sum = map[p1x][p1y]+map[p2x][p2y];    
  37.         curMax += sum;    
  38.         dfs(index+1);    
  39.         curMax -= sum;    
  40.         p1x--;p2x--;    
  41.     }    
  42.     
  43.     //down down    
  44.     if( p1y+1<N && p2y+1<N ){    
  45.         p1y++;p2y++;    
  46.         int sum = map[p1x][p1y]+map[p2x][p2y];    
  47.         curMax += sum;    
  48.         dfs(index+1);    
  49.         curMax -= sum;    
  50.         p1y--;p2y--;    
  51.     }    
  52.     
  53.     //rd    
  54.     if( p1x+1<N && p2y+1<N ) {    
  55.         p1x++;p2y++;    
  56.         int sum = map[p1x][p1y]+map[p2x][p2y];    
  57.         curMax += sum;    
  58.         dfs(index+1);    
  59.         curMax -= sum;    
  60.         p1x--;p2y--;    
  61.     }    
  62.     
  63.     //dr    
  64.     if( p1y+1<N && p2x+1<N ) {    
  65.         p1y++;p2x++;    
  66.         int sum = map[p1x][p1y]+map[p2x][p2y];    
  67.         curMax += sum;    
  68.         dfs(index+1);    
  69.         curMax -= sum;    
  70.         p1y--;p2x--;    
  71.     }    
  72. }    
  73.     
  74. int _tmain(int argc, _TCHAR* argv[])    
  75. {    
  76.     curMax = map[0][0];    
  77.     dfs(0);    
  78.     cout <<sumMax-map[N-1][N-1]<<endl;    
  79.     return 0;    
  80. }    

解法二、动态规划

    上述解法一的搜索解法是的时间复杂度是指数型的,如果是只走一次的话,是经典的dp。

2.1、DP思路详解

    故正如@绿色夹克衫所说:此题也可以用动态规划求解,大概思路就是同时DP 2次所走的状态。

 

  1、先来分析一下这个问题,为了方便讨论,先对矩阵做一个编号,且以5*5的矩阵为例(给这个矩阵起个名字叫M1):
M1
0  1  2  3  4
1  2  3  4  5
2  3  4  5  6
3  4  5  6  7
4  5  6  7  8
  从左上(0)走到右下(8)共需要走8步(2*5-2)。为了方便讨论,我们设所走的步数为s。因为限定了只能向右和向下走,因此无论如何走,经过8步后(s = 8)都将走到右下。而DP的状态也是依据所走的步数来记录的。
  再来分析一下经过其他s步后所处的位置,根据上面的讨论,可以知道:

 

  • 经过8步后,一定处于右下角(8);
  • 那么经过5步后(s = 5),肯定会处于编号为5的位置;
  • 3步后肯定处于编号为3的位置;
  • s = 4的时候,处于编号为4的位置,此时对于方格中,共有5(相当于n)个不同的位置,也是所有编号中最多的。

 

  故推广来说,对于n*n的方格,总共需要走2n - 2步,且当s = n - 1时,编号为n个,也是编号数最多的
  如果用DP[s,i,j]来记录2次所走的状态获得的最大值,其中s表示走s步,i,和j分别表示在s步后第1趟走的位置,和第2趟走的位置。
  2、为了方便讨论,再对矩阵做一个编号(给这个矩阵起个名字叫M2):
M2
0  0  0  0  0
1  1  1  1  1
2  2  2  2 2
3  3  3  3  3
4  4  4  4  4

    把之前定的M1矩阵也再贴下:
M1 
0  1  2  3  4
1  2  3  4  5
2  3  4  5  6
3  4  5  6  7
4  5  6  7  8
  我们先看M1,在经过6步后,肯定处于M1中编号为6的位置。而M1中共有3个编号为6的,它们分别对应M2中的2 3 4。故对于M2来说,假设第1次经过6步走到了M2中的2,第2次经过6步走到了M2中的4,DP[s,i,j] 则对应 DP[6,2,4]。由于s = 2n - 2,0 <= i<= <= j <= n,所以这个DP共有O(n^3)个状态。
M1
0  1  2  3  4
1  2  3  4  5
2  3  4  5  6
3  4  5  6  7
4  5  6  7  8
  再来分析一下状态转移,以DP[6,2,3]为例(就是上面M1中加粗的部分),可以到达DP[6,2,3]的状态包括DP[5,1,2],DP[5,1,3],DP[5,2,2],DP[5,2,3]。

  3、下面,我们就来看看这几个状态:DP[5,1,2],DP[5,1,3],DP[5,2,2],DP[5,2,3],用加粗表示位置DP[5,1,2]    DP[5,1,3]    DP[5,2,2]    DP[5,2,3] (加红表示要达到的状态DP[6,2,3]
0 1 2 3 4    0 1 2 3 4    0 1 2 3 4    0 1 2 3 4
1 2 3 4 5    1 2 3 4 5    1 2 3 4 5    1 2 3 4 5
2 3 4 6    2 3 4 5 6    2 3 4 6    2 3 4 6
3 4 5 6 7    3 4 6 7    3 4 5 6 7    3 4 6 7
4 5 6 7 8    4 5 6 7 8    4 5 6 7 8    4 5 6 7 8
  因此:

DP[6,2,3] = Max(DP[5,1,2] ,DP[5,1,3],DP[5,2,2],DP[5,2,3]) + 6,2和6,3格子中对应的数值    (式一) 

  上面(式一)所示的这个递推看起来没有涉及:“如果两次经过同一个格子,那么该数只加一次的这个条件”,讨论这个条件需要换一个例子,以DP[6,2,2]为例:DP[6,2,2]可以由DP[5,1,1],DP[5,1,2],DP[5,2,2]到达,但由于i = j,也就是2次走到同一个格子,那么数值只能加1次。
  所以当i = j时,

DP[6,2,2] = Max(DP[5,1,1],DP[5,1,2],DP[5,2,2]) + 6,2格子中对应的数值                         (式二

  4、故,综合上述的(式一),(式二)最后的递推式就是
if(i != j)
DP[s, i ,j] = Max(DP[s - 1, i - 1, j - 1], DP[s - 1, i - 1, j], DP[s - 1, i, j - 1], DP[s - 1, i, j]) + W[s,i] + W[s,j]
else
DP[s, i ,j] = Max(DP[s - 1, i - 1, j - 1], DP[s - 1, i - 1, j], DP[s - 1, i, j]) + W[s,i]

    其中W[s,i]表示经过s步后,处于i位置,位置i对应的方格中的数字。

  复杂度分析:状态转移最多需要统计4个变量的情况,看做是O(1)的。共有O(n^3)个状态,所以总的时间复杂度是O(n^3)的。空间上可以利用滚动数组优化,由于每一步的递推只跟上1步的情况有关,因此可以循环利用数组,将空间复杂度降为O(n^2)。

2.2、DP方法实现

    OK,上述这个方法可能不算最优解法,但相对比较容易想一些。

    为了便于实现,我们认为所有不能达到的状态的得分都是负无穷,参考代码如下:
  1. //copyright@caopengcs 2013  
  2. const int N = 202;  
  3. const int inf = 1000000000;  //无穷大  
  4. int dp[N * 2][N][N];    
  5. bool isValid(int step,int x1,int x2,int n) { //判断状态是否合法  
  6. int y1 = step - x1, y2 = step - x2;  
  7.     return ((x1 >= 0) && (x1 < n) && (x2 >= 0) && (x2 < n) && (y1 >= 0) && (y1 < n) && (y2 >= 0) && (y2 < n));  
  8. }  
  9.   
  10. int getValue(int step, int x1,int x2,int n) {  //处理越界 不存在的位置 给负无穷的值  
  11.     return isValid(step, x1, x2, n)?dp[step][x1][x2]:(-inf);  
  12. }  
  13.   
  14. //状态表示dp[step][i][j] 并且i <= j, 第step步  两个人分别在第i行和第j行的最大得分 时间复杂度O(n^3) 空间复杂度O(n^3)   
  15. int getAnswer(int a[N][N],int n) {  
  16. int P = n * 2 - 2; //最终的步数  
  17. int i,j,step;  
  18.       
  19.     //不能到达的位置 设置为负无穷大  
  20.     for (i = 0; i < n; ++i) {  
  21.         for (j = i; j < n; ++j) {  
  22.             dp[0][i][j] = -inf;  
  23.         }  
  24.       
  25.     }  
  26.     dp[0][0][0] = a[0][0];  
  27.   
  28.       for (step = 1; step <= P; ++step) {  
  29.         for (i = 0; i < n; ++i) {  
  30.             for (j = i; j < n; ++j) {  
  31.                 dp[step][i][j] = -inf;  
  32.                 if (!isValid(step, i, j, n)) { //非法位置  
  33.                     continue;  
  34.                 }  
  35.                 //对于合法的位置进行dp  
  36.                 if (i != j) {  
  37.                     dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i - 1, j - 1, n));  
  38.                     dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i - 1, j, n));  
  39.                     dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i, j - 1, n));  
  40.                     dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i, j,n));  
  41.                     dp[step][i][j] += a[i][step - i] + a[j][step - j];  //不在同一个格子,加两个数  
  42.                 }  
  43.                 else {  
  44.                     dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i - 1, j - 1, n));  
  45.                     dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i - 1, j,  n));  
  46.                     dp[step][i][j] = max(dp[step][i][j], getValue(step - 1, i, j,  n));  
  47.                     dp[step][i][j] += a[i][step - i]; // 在同一个格子里,只能加一次  
  48.                 }  
  49.                   
  50.             }  
  51.         }  
  52.     }  
  53.     return dp[P][n - 1][n- 1];  
  54. }  
2.3、DP实现优化版
    以上代码的复杂度空间复杂度是O(n^3),稍微想一下可以知道我们在推算dp[step]的时候 只有到了dp[step - 1],所以第一维,我们只开到2就可以了。就是step为奇数时,我们都用dp[1][i][j]表示状态,step为偶数我们都用dp[0][i][j]表示状态,这样我们只需要O(n^2)的空间,这就是滚动数组的方法。滚动数组写起来并不复杂,只需要对上面的代码稍作修改即可,优化后的代码如下:
  1. //copyright@caopengcs 8/24/2013  
  2. int dp[2][N][N];  
  3.   
  4. bool isValid(int step,int x1,int x2,int n) { //判断状态是否合法  
  5. int y1 = step - x1, y2 = step - x2;  
  6.     return ((x1 >= 0) && (x1 < n) && (x2 >= 0) && (x2 < n) && (y1 >= 0) && (y1 < n) && (y2 >= 0) && (y2 < n));  
  7. }  
  8.   
  9. int getValue(int step, int x1,int x2,int n) {  //处理越界 不存在的位置 给负无穷的值  
  10.     return isValid(step, x1, x2, n)?dp[step % 2][x1][x2]:(-inf);  
  11. }  
  12.   
  13. //状态表示dp[step][i][j] 并且i <= j, 第step步  两个人分别在第i行和第j行的最大得分 时间复杂度O(n^3) 使用滚动数组 空间复杂度O(n^2)   
  14. int getAnswer(int a[N][N],int n) {  
  15. int P = n * 2 - 2; //最终的步数  
  16. int i,j,step,s;  
  17.       
  18.     //不能到达的位置 设置为负无穷大  
  19.     for (i = 0; i < n; ++i) {  
  20.         for (j = i; j < n; ++j) {  
  21.             dp[0][i][j] = -inf;  
  22.         }  
  23.       
  24.     }  
  25.     dp[0][0][0] = a[0][0];  
  26.   
  27.       for (step = 1; step <= P; ++step) {  
  28.         for (i = 0; i < n; ++i) {  
  29.             for (j = i; j < n; ++j) {  
  30.                 dp[step][i][j] = -inf;  
  31.                 if (!isValid(step, i, j, n)) { //非法位置  
  32.                     continue;  
  33.                 }  
  34.                 s = step % 2;  //状态下表标  
  35.                 //对于合法的位置进行dp  
  36.                 if (i != j) {  
  37.                     dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i - 1, j - 1, n));  
  38.                     dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i - 1, j, n));  
  39.                     dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i, j - 1, n));  
  40.                     dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i, j,n));  
  41.                     dp[s][i][j] += a[i][step - i] + a[j][step - j];  //不在同一个格子,加两个数  
  42.                 }  
  43.                 else {  
  44.                     dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i - 1, j - 1, n));  
  45.                     dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i - 1, j,  n));  
  46.                     dp[s][i][j] = max(dp[s][i][j], getValue(step - 1, i, j,  n));  
  47.                     dp[s][i][j] += a[i][step - i]; // 在同一个格子里,只能加一次  
  48.                 }  
  49.                   
  50.             }  
  51.         }  
  52.     }  
  53.     return dp[P % 2][n - 1][n- 1];  
  54. }  
 

转载于:https://www.cnblogs.com/sourcecode2014/p/3279501.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值