exgcd

什么是exgcd

exgcd是用来求解不定方程、逆元等问题的工具

可以求解方程\[ax+by=gcd(a,b)\]并返回gcd值

代码

int exgcd(int a, int b, int &x, int &y){
    if(b == 0){
        x = 1; y = 0; //ax = gcd(a, 0) = a
        return a;
    }
    int result = exgcd(b, a%b, x, y);
    int tp = x;
    x = y;
    y = tp - a/b*y; //见说明
    return result; //gcd
}

说明

\(x,y\)的求值方法

  • \(a'=b,b'=a\) % \(b\)
  • \(a'x+b'y=gcd(a',b')\)
  • 根据一般\(gcd\)的方法可知\(gcd(a,b)=gcd(a',b')\)
  • \(\therefore\) \(a'x+b'y=gcd(a,b)\)
  • \(bx+(a\)%\(b)y=gcd(a,b)\)
  • \(\because a\)%\(b=a-\lfloor a\div b\rfloor \times b\) (用计算机语言表示为a-a/b*b)(以下下取整除用\(/\)表达)
  • \(\therefore bx+(a- a / b \times b)y=gcd(a,b)\)
  • \(\therefore\)提取\(-a / b \times by\)
  • \[b(a/b \times y) + ay= gcd(a,b)\]

因此对应原来x, y的就是y, x-a/b*y

功能

1. 解形如\(ax+by=c\)的不定方程

可以直接通过exgcd的本来含义转化
原: 求\(ax+by=gcd(a,b)\)

\(c\)可以被\(gcd(a, b)\)整除时,则此方程有整数解,设\({m}={{c}\over{gcd(a,b)}}\),则可以得一组特解\(mp,mq\) ( \(p,q\)exgcd(a,b,p,q)的值),设\(gcd(a,b) = g\)

在解\(mp,mq\)成立的情况下,解\(mp+b,mq-a\)也成立,所以可以通过取模的方法求出\(x\)\(y\)的最小值,\(x\)的最小值为\(mp\)%\(b \over g\)\(y\)的最小值为\(mq\)%\(a \over g\)

注意,在实际使用中,exgcd并不能处理\(a,b\)是负数的情况,当\(a,b\)是负数时,一般根据题意采取等价的取相反数做法

在实际的取模中,最好加上多倍的模数,避免负数

转载于:https://www.cnblogs.com/RiverHamster/p/exgcd.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值