连分数理论

1、Euler's continued fraction formula

== The original formula ==
[[Euler]] derived the formula as
connecting a finite sum of products with a finite continued fraction.

\[
a_0 + a_0a_1 + a_0a_1a_2 + \cdots + a_0a_1a_2\cdots a_n =
\cfrac{a_0}{1 - \cfrac{a_1}{1 + a_1 - \cfrac{a_2}{1 + a_2 - \cfrac{\ddots}{\ddots
\cfrac{a_{n-1}}{1 + a_{n-1} - \cfrac{a_n}{1 + a_n}}}}}}\,
\]

The identity is easily established by [[mathematical induction|induction]] on ''n'', and is therefore applicable in the limit: if the expression on the left is extended to represent a [[convergent series|convergent infinite series]], the expression on the right can also be extended to represent a convergent infinite continued fraction.

2、Gauss's continued fraction

==Derivation==
Let $f_0, f_1, f_2, \dots$ be a sequence of analytic functions so that
\[f_{i-1} - f_i = k_i\,z\,f_{i+1}\]
for all $i > 0$, where each $k_i$ is a constant.

Then
\[\frac{f_{i-1}}{f_i} = 1 + k_i z \frac{f_{i+1}}{{f_i}}, \,\] and so \[\frac{f_i}{f_{i-1}} = \frac{1}{1 + k_i z \frac{f_{i+1}}{{f_i}}}\]

Setting $g_i = f_i / f_{i-1}$,
\[g_i = \frac{1}{1 + k_i z g_{i+1}},\]
So
\[g_1 = \frac{f_1}{f_0} = \cfrac{1}{1 + k_1 z g_2} = \cfrac{1}{1 + \cfrac{k_1 z}{1 + k_2 z g_3}}
= \cfrac{1}{1 + \cfrac{k_1 z}{1 + \cfrac{k_2 z}{1 + k_3 z g_4}}} = \dots\]

Repeating this ad infinitum produces the continued fraction expression
\[\frac{f_1}{f_0} = \cfrac{1}{1 + \cfrac{k_1 z}{1 + \cfrac{k_2 z}{1 + \cfrac{k_3 z}{1 + {}\ddots}}}}\]

In Gauss's continued fraction, the functions $f_i$ are hypergeometric functions of the form ${}_0F_1$, ${}_1F_1$, and ${}_2F_1$, and the equations $f_{i-1} - f_i = k_i z f_{i+1}$ arise as identities between functions where the parameters differ by integer amounts. These identities can be proven in several ways, for example by expanding out the series and comparing coefficients, or by taking the derivative in several ways and eliminating it from the equations generated.

转载于:https://www.cnblogs.com/Eufisky/p/7821460.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值