我所在的工作团队非常喜欢使用MongoDB,最近遇到一些非常有趣的问题。下面将遇到的一些问题做一下整理,希望对其他遇到类似问题的人有帮助,同时也看看其他人有没有更好更简洁的解决方法。这些问题可能看起来比较琐碎,不过希望能使读者产生一些新的想法。
Mongoid Ruby库是一个非常棒的Ruby库,可以利用该库将模型定义成类。下面定义两个非常简单的类,了解DataMapper或Django ORM(Object/Relation Mapping - 对象/关系映射)的读者应该对此非常熟悉。
class Publication
include Mongoid::Document
field :name, :type => String
field :section, :type => String
field :body, :type => String
field :is_published, :type => Boolean
end
class LongerPublication
field :extra_body, :type => String
end
此时系统中已经存在一个Publication类和一个LongerPublication类。现在需要做一些信息汇总方面的工作,想通过Publication类对象的类型与状态得到对其的数量统计信息。另外最好能够按照当前的状态进行具有针对性的统计分析。
一种方法是使用Mongo内置的map-reduce。Mongoid扩展了该功能,让程序员可以使用Ruby程序实现其所需的内联Javascript函数(mapper和reducer)。读者可能觉得这种方法并不好,不过似乎这是目前最好的方法了。有很多更复杂的函数将这些Javascript函数分别写到不同的文件中,这样做也许更便于测试,但读者如果自行测试整个工作中这项工作的输入/输出,就会发现其性能并不好。
KLASS ="this._type"
SECTION ="this.section"
def self.count_by(type)
map = <
function() {
function truthy(value) {
return (value ==true) ?1 :0;
}
emit(#{type}, {type: #{type}, count:1, published: truthy(this.is_published)})
}
EOF
reduce = <
function(key, values) {
var count =0; published =0;
values.forEach(function(doc) {
count += parseInt(doc.count);
published += parseInt(doc.published);
type = doc.type
};
return {type: type, count: count, published: published}
}
EOF
collection.mapreduce(map, reduce).find()
end
在进行实验测试时会返回类似如下代码所示的数据;不过有些读者在实验时也有可能返回Mongo::Cursor,通过Mongo::Cursor可以获取到以下数据。
[{"_id"=>"Publication","value"=>{"type"=>"Publication","count"=>42.0,"published"=>29.0}},
{"_id"=>"LongerPublication", "value"=>{"type"=>"LongerPublication", "count"=>12.0, "published"=>10.0}}]
Mongo与Mongoid使我非常喜欢这种信息汇总时的mapreduce工作,特别是将Ruby与Javascript这两种编程语言混合在一起编写,并没有影响到代码的可读性。而如果给定一个关系数据库,用户有可能写出各种各样千奇百怪的SQL语句——因为与其他任意语言和SQL之间的语法差异相比,Javascript和Ruby之间的语法差异都要小得多。会多种编程语言的人越来越多,但是懂得如何更好地在一种编程语言中嵌入另外一种语言的人是否也会越来越多呢?