专家称SOA技术应该采取云计算定价模式

SOA专家Dave Linthiculum提出,鉴于SOA项目在企业中常遭遇失败,SOA技术应借鉴云计算的按使用收费模式。这不仅能降低用户的风险,还能激励SOA技术供应商持续改进服务。

本文讲的是专家称SOA技术应该采取云计算定价模式,【IT168 资讯】SOA专家Dave·Linthicum说,让我们面对这个问题:SOA技术在企业中获得成功是没有保证的。我们在服务器上线之前付出了数百万美元,然后在实施之后发现SOA项目没有达到预期的目标,这个项目失败了。这种事情是不是很熟悉?
  Linthicum说,我没有把失败的原因归咎于SOA技术厂商。在许多应用实例中,SOA设计师没有提出正确的问题,也没有进行测试。当你这样做SOA项目的时候,失败是理所当然的。然而,如果你从SOA设计师的观点看这个问题,他们会说在预算允许的时候他们必须要增加SOA的开支,并且具体地设想这个技术能够像广告宣传的那样的工作。
  云计算提供商提供了按使用收费的定价模式。如果这个技术不起作用,你可以像关闭电源一样取消这个服务。因此,云计算提供商在利益的刺激下要提供良好的服务。否则,他们的收入就会急剧下降。实际上,云计算服务提供商是承担风险的,而不是用户在承担风险。
  那么,为什么不对现场应用的SOA技术采用云计算的定价模式呢?他们只有在提供价值的情况下才能得到收入。如果那里没有价值,他们就得不到收入。Linthicum说,我和那些为没有发挥作用的SOA项目付费的用户似乎都认为这是非常公平的。
  下面是这个难题:任何SOA技术厂商要保证自己的技术能够增加一个企业SOA项目中的价值,它都应该用钱来证明它说的话是真实的。提供基于服务的定价选择,也许会因为风险的转变而收取更多的费用。这样做,你将真正地支持你的技术。而且,你将在这种利益的刺激下在未来提供更多的价值。
  随着基于服务的定价方式日益普及和云计算继续增加吸引力,SOA技术厂商都会向这个方向发展。

原文发布时间为:2009-08-05
本文作者: IT168.com
本文来自云栖社区合作伙伴IT168,了解相关信息可以关注IT168。
原文标题:专家称SOA技术应该采取云计算定价模式

内容概要:本文主要介绍了一项基于Pytorch框架搭建神经网络的研究【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)工作,重点实现了DQN算法、优先级采样的DQN算法以及结合人工势场法的DQN算法在避障控制中的应用。研究通过Matlab和Python平台进行仿真与实验,旨在提升智能体在复杂环境中的自主避障能力。文中详细阐述了三种算法的设计思路、网络结构搭建、训练流程及优化策略,并通过对比实验验证了各方法的有效性与性能差异,尤其突出了DQN结合人工势场法在引导智能体快速学习安全路径方面的优势。此外,文档还列举了大量相关的科研方向与技术应用案例,涵盖无人机控制、路径规划、强化学习、电力系统优化等多个领域,展示了广泛的科研服务能力和技术积累。; 适合人群:具备一定Python和深度学习基础,熟悉强化学习基本概念的研究生、科研人员及工程技术人员;对智能控制、机器人避障、无人机路径规划等领域感兴趣的开发者。; 使用场景及目标:① 学习DQN及其改进算法(如优先经验回放)在实际控制系统中的实现方式;② 掌握如何将传统人工势场法与深度强化学习相结合以提升避障性能;③ 借鉴Matlab与Python混合仿真方法,开展智能控制算法的实验验证与对比分析;④ 拓展至无人机、无人车等智能体的自主导航系统设计。; 阅读建议:建议读者结合提供的代码资源,逐步复现实验过程,重点关注神经网络结构设计、奖励函数设定及算法收敛性分析。同时可参考文中列出的其他研究方向,拓展应用场景,提升科研创新能力。
内容【2025最新高维多目标优化】无人机三维路径规划的导航变量的多目标粒子群优化算法NMOPSO研究(Matlab代码实现)概要:本文围绕“2025最新高维多目标优化”主题,重点研究基于城市场景下无人机三维路径规划的导航变量多目标粒子群优化算法NMOPSO,并提供了完整的Matlab代码实现。该研究旨在解决复杂威胁环境下无人机路径规划中的多目标优化问题,兼顾路径安全性、能耗、距离与时效等多个目标,通过改进的粒子群算法实现高效搜索与优化。文中详细阐述了算法设计思路、数学建模过程、适应度函数构建及约束处理机制,并结合三维城市环境进行仿真实验验证其有效性。此外,文档还列举了大量相关科研方向与技术资源,涵盖智能优化算法、路径规划、无人机控制、机器学习、电力系统等多个领域,展示了广泛的科研应用场景和技术支持体系。; 适合人群:具备一定Matlab编程基础,从事无人机路径规划、智能优化算法或自动化控制等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究高维多目标优化算法在无人机三维路径规划中的应用;②掌握多目标粒子群优化算法(MOPSO/NMOPSO)的设计与实现方法;③复现并改进复杂环境下的无人机协同路径规划模型;④拓展至其他智能优化与控制问题的研究与仿真。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注算法核心模块的实现细节,如种群初始化、非支配排序、拥挤度计算与动态环境建模。同时可参考文中列出的其他研究案例,拓展技术视野,推动算法在实际科研项目中的迁移与应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值