题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3389
题意:有n堆石子。Alice和Bob轮流玩一个游戏,游戏的规则是,每回合一个人可以选择某一堆进行操作,操作是:假设选择操作的那堆石子的编号为A,现在还要选择一堆石子B,满足B<A && (A+B)%2==1 && (A+B)%3==0,然后可以将A中至少一颗石子移到B中去,第一个不能进行操作的人输,问谁能赢。
思路:1 3 4这三个位置无法移到其他位置。每个位置移到下个位置后奇偶性改变。容易得出模6为0、2、5的位置移动步数为奇,其余为偶。也容易得出移动位置是偶数步的位置上的牌数是无关紧要的:因为不论对方将偶数步位置上的牌作如何操作,我都可以把他移动的牌再往后移动一步。也就是说偶数步上的位置的牌我可以保证两个人对其的操作数是偶数次,从而不影响到奇数步位置上的牌的状态。奇数步位置上的牌可以直接移到最终位置:一、如果直接把某一奇数步位置上的某些牌移到1、3、4这些终点位置,就相当于取石子游戏中从一堆石子里取走一些石子;二、如果把一些牌移到偶数步位置,之前说了偶数步位置上的牌可以无视的,我们也可以把它看作是从这堆石子里取走了一些石子。所以就是把奇数步位置上的异或起来就好了。
int C,num=0;
int n;
int main()
{
for(scanf("%d",&C);C--;)
{
int x=0,i,t;
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%d",&t);
if(i%6==0||i%6==2||i%6==5) x^=t;
}
printf("Case %d: ",++num);
if(x) puts("Alice");
else puts("Bob");
}
return 0;
}