[Contest20171109]函数(lipshitz)

大M正在学习函数的光滑性并对Lipshitz常数非常感兴趣:当一个定义域为$[l,r]$的函数$f$,对于定义域内的任意$x,y$都有$\left|f(x)-f(y)\right|\leq K\cdot\left|x-y\right|$时,则称$K$的最小值为该函数在$[l,r]$上的Lipshitz常数。
然而大M并不满足于函数,所以他定义:对于一个序列$v_{1\cdots n}$,当$1\leq x\lt y\leq n$且$x,y$均为整数时,同样满足$\left|v_x-v_y\right|\leq K\cdot\left|x-y\right|$,则称$K$的最小整数值为序列$v$的Lipschitz常数。
现在给你一个长度为$n$的序列$v_{1\cdots n}$并给出$q$个询问,对于每对询问$[l,r]$,你需要求出$v_{l\cdots r}$的所有子序列$v_{x\cdots y}(l\leq x\lt y\leq r)$的Lipshitz常数之和。这可难不倒会编程的你。

$n\leq 10^5,q\leq 100$

 

转换一下,$K=max\left\{\dfrac{\left|v_x-v_y\right|}{\left|x-y\right|}\right\}$

题解给了一个结论:最终的答案一定是某长度为$2$的子序列,还说“这么简单,不予证明”,但还是得证一下的

用归纳法,若(长度为$2\cdots n$的序列的答案)都由长度为$2$的子序列产生,我们将要证明:长度为$n+1$的序列答案也由长度为$2$的子序列产生

设它是$a_{1\cdots n+1}$,若答案为它本身而不是其他子序列,那么$a_1$和$a_{n+1}$一个是最小一个是最大,不妨设$a_1\lt a_{n+1}$

那么这个序列的Lipshitz常数为$\dfrac{a_{n+1}-a_1}n$,因为其他长度的子序列的答案都由长度为$2$的子序列产生,那么对$1\leq i\leq n$,都有$\dfrac{a_{n+1}-a_1}n\gt\left|a_i-a_{i+1}\right|$

把这$n$个不等式加起来,得$a_{n+1}-a_1\gt \left|a_1-a_2\right|+\cdots+\left|a_n-a_{n+1}\right|$

整理,得$a_2+\left|a_2-a_3\right|+\cdots+\left|a_{n-1}-a_n\right|-a_n\lt 0$

移一下绝对值外的,再补上几项,得$a_n-a_{n-1}+\cdots+a_3-a_2\gt\left|a_n-a_{n-1}\right|+\cdots+\left|a_3-a_2\right|$

一个数取绝对值后不会变小,所以这里显然矛盾,原命题得证

因为长度为$2$的序列的答案显然长度为$2$,所以对于任意$n\geq 2$,长度为$n$的序列,答案都由长度为$2$的子序列产生

证完结论,我们来找答案

先处理处所有长度为$2$的子序列的答案:$d_i=\left|v_i-v_{i+1}\right|$

那么$v_{l\cdots r}$的Lipshitz常数为$max\left\{d_{l\cdots r-1}\right\}$

预处理出每个$d_i$向左最远能做哪些区间的最大值($\geq$),向右最远能做哪些区间的最大值($\gt$)(一个大于等于一个大于是为了不重不漏覆盖所有答案),这里用ST表预处理,再二分即可

然后每次询问就$O(n)$统计一下即可

#include<stdio.h>
#define ll long long
int f[100010][17],log2[100010],right[100010],left[100010];
int abs(int x){return x>0?x:-x;}
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
int query(int l,int r){
	int k=log2[r-l+1];
	return max(f[l][k],f[r-(1<<k)+1][k]);
}
int main(){
	int n,q,i,j,l,r,mid,ans;
	ll res;
	scanf("%d%d",&n,&q);
	for(i=1;i<=n;i++)scanf("%d",f[i]);
	log2[1]=0;
	for(i=2;i<=n;i++)log2[i]=log2[i>>1]+1;
	n--;
	for(i=1;i<=n;i++)f[i][0]=abs(f[i][0]-f[i+1][0]);
	for(j=1;j<17;j++){
		for(i=1;i<=n;i++){
			f[i][j]=f[i][j-1];
			if(i+(1<<(j-1))<=n)f[i][j]=max(f[i][j],f[i+(1<<(j-1))][j-1]);
		}
	}
	for(i=1;i<=n;i++){
		l=i+1;
		r=n;
		ans=i;
		while(l<=r){
			mid=(l+r)>>1;
			if(query(i+1,mid)<=f[i][0]){
				ans=mid;
				l=mid+1;
			}else
				r=mid-1;
		}
		right[i]=ans;
		l=1;
		r=i-1;
		ans=i;
		while(l<=r){
			mid=(l+r)>>1;
			if(query(mid,i-1)<f[i][0]){
				ans=mid;
				r=mid-1;
			}else
				l=mid+1;
		}
		left[i]=ans;
	}
	while(q--){
		scanf("%d%d",&l,&r);
		r--;
		res=0;
		for(i=l;i<=r;i++)res+=(i-max(l,left[i])+1)*(ll)(min(r,right[i])-i+1)*(ll)f[i][0];
		printf("%lld\n",res);
	}
}

转载于:https://www.cnblogs.com/jefflyy/p/7809770.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值