凸优化简介23

本文介绍了平滑技术在解决凸且非光滑目标函数优化问题中的应用,特别是Nesterov平滑方法和Moreau-Yosida平滑方法。通过平滑函数近似原函数,分析了两种方法的误差界和迭代次数,展示了如何在优化过程中控制误差并提高效率。
摘要由CSDN通过智能技术生成

平滑技术(Smoothing Techniques)

考虑一个凸且非光滑的目标函数:
min ⁡ x ∈ X f ( x ) \min\limits_{x\in X}f(x) xXminf(x)
为了解决这个问题,一个比较直接的想法是使用一个凸且光滑的函数 f u ( x ) f_u(x) fu(x)来近似这个函数。
min ⁡ x ∈ X f u ( x ) \min\limits_{x\in X}f_u(x) xXminfu(x)
其中 f u f_u fu L u L_u Lu Lipschitz连续的。
考虑一个简单的例子,函数 f ( x ) = ∣ x ∣ f(x)=|x| f(x)=x,该函数是凸的,但是是非光滑的。其近似的光滑且凸的函数,为:
f u ( x ) = { x 2 2 u , ∣ x ∣ ≤ u , ∣ x ∣ − u 2 , ∣ x ∣ > u f_u(x)=\left\{ \begin{aligned} &\frac{x^2}{2u}, &|x|\leq u,\\ &|x|-\frac{u}{2}, &|x| > u \end{aligned} \right. fu(x)=2ux2,x2u,xu,x>u
该函数被称为 Huber function
在这里插入图片描述
Nesterov平滑方法使用如下的函数近似 f ( x ) f(x) f(x)
f u ( x ) = max ⁡ y ∈ d o m f ∗ { x T y − f ∗ ( y ) − u d ( y ) } f_u(x)=\max\limits_{y\in dom f^*}\{x^Ty-f^*(y)-ud(y)\} fu(x)=ydomfmax{ xTyf(y)ud(y)},其中 f ∗ ( y ) = max

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值