鸢尾花分类MATLAB实验报告,[机器学习实战-分类-决策树]-以鸢尾花分类实验为例...

本实验报告介绍了使用MATLAB进行鸢尾花分类的过程,包括数据获取、训练集测试集划分、决策树模型训练、预测、评估、模型保存与加载以及可视化。通过对UCI数据集的鸢尾花数据进行处理,模型实现了100%的预测精度。
摘要由CSDN通过智能技术生成

整套流程:

1.数据获取,划分训练集测试集

2.模型训练->模型预测->模型评估

3.模型的保存与加载

4.模型可视化

iris数据集简介:共150条数据,三个类(分别:Setosa,Versicolour,Virginica。每个类50条数据),4个维度特征(分别为:萼片长度、萼片宽度、花瓣长度、花瓣宽度)

数据源:https://archive.ics.uci.edu/ml/datasets/iris

88490f54a5df

"""1.数据获取,划分训练集测试集"""

from sklearn import datasets

from sklearn.model_selection import train_test_split

# 数据获取

iris = datasets.load_iris() # 加载 iris 数据集

iris_feature = iris.data # 特征数据

iris_target = iris.target # 分类数据

print('类别:',iris.target_names)

print('特征:',iris.feature_names)

# 划分训练集测试集: test_size测试集占比, random_stat为数据混乱程度

feature_train, feature_test, targe

鸢尾花分类是一个经典的机器学习入门案例,通常用于数据挖掘和模式识别领域,特别是在使用Python的Scikit-Learn库时。在MATLAB中,也有相应的工具箱可以处理此类问题,如统计学习工具箱(Statistical Toolbox)。 鸢尾数据集Iris dataset)包含了三种不同品种的鸢尾花测量值,比如花萼长度、花瓣长度等。你可以通过以下步骤来进行鸢尾花分类: 1. **加载数据**:使用`loaddata`函数从MATLAB的数据仓库中获取鸢尾数据集,或者从网上下载并读取CSV文件。 ```matlab [features, labels] = load('iris_dataset.mat'); % 或者使用csvread('iris.csv') ``` 2. **数据预处理**:确认数据已经被归一化或者标准化,以便算法能更好地处理特征。 3. **划分数据集**:将数据分为训练集和测试集,通常比例为70%训练集和30%测试集。 ```matlab [trainFeatures, trainLabels, testFeatures, testLabels] = crossvalind('HoldOut', features, labels, 0.7); ``` 4. **选择模型**:MATLAB有多种分类算法可供选择,例如kNN、决策树、SVM或神经网络。例如,用支持向量机(SVM)进行分类: ```matlab model = fitcecoc(trainFeatures, trainLabels); % 使用fitcecoc函数训练多类SVM ``` 5. **预测与评估**:用训练好的模型对测试集进行预测,并计算准确率或其他性能指标。 ```matlab predictedLabels = predict(model, testFeatures); accuracy = sum(predictedLabels == testLabels) / numel(testLabels); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值