整套流程:
1.数据获取,划分训练集测试集
2.模型训练->模型预测->模型评估
3.模型的保存与加载
4.模型可视化
iris数据集简介:共150条数据,三个类(分别:Setosa,Versicolour,Virginica。每个类50条数据),4个维度特征(分别为:萼片长度、萼片宽度、花瓣长度、花瓣宽度)
数据源:https://archive.ics.uci.edu/ml/datasets/iris
"""1.数据获取,划分训练集测试集"""
from sklearn import datasets
from sklearn.model_selection import train_test_split
# 数据获取
iris = datasets.load_iris() # 加载 iris 数据集
iris_feature = iris.data # 特征数据
iris_target = iris.target # 分类数据
print('类别:',iris.target_names)
print('特征:',iris.feature_names)
# 划分训练集测试集: test_size测试集占比, random_stat为数据混乱程度
feature_train, feature_test, targe