从理论上来讲用MapReduce技术实现KMeans算法是很Natural的想法:在Mapper中逐个计算样本点离哪个中心最近,然后Emit(样本点所属的簇编号,样本点);在Reducer中属于同一个质心的样本点在一个链表中,方便我们计算新的中心,然后Emit(质心编号,质心)。但是技术上的事并没有理论层面那么简单。
Mapper和Reducer都要用到K个中心(我习惯称之为质心),Mapper要读这些质心,Reducer要写这些质心。另外Mapper还要读存储样本点的数据文件。我先后尝试以下3种方法,只有第3种是可行的,如果你不想被我误导,请直接跳过前两种。
一、用一个共享变量在存储K个质心
由于K很小,所以我们认为用一个Vector<Sample>来存储K个质心是没有问题的。以下代码是错误的:
class MyJob extends Tool{
static Vector<Sample> centers=new Vector<Sample>(K);
static class MyMapper extends Mapper{
//read centers
}
static class MyMapper extends Reducer{
//update centers
}
void run(){
until ( convergence ){
map();
reduce();
}
}
发生这种错误是因为对hadoop执行流程不清楚,对数据流不清楚。简单地说Mapper和Reducer作为MyJob的内部静态类,它们应该是独立的--它们不应该与MyJob有任何交互,因为Mapper和Reducer分别在Task Tracker的不同JVM中运行,而MyJob以及MyJob的内部其他类都在客户端上运行,自然不能在不同的JVM中共享一个变量。
详细的流程是这样的:
首先在客户端上,JVM加载MyJob时先初始化静态变量,执行static块。然后提交作业到Job Tracker。
在Job Tracker上,分配Mapper和Reducer到不同的Task Tracker上。Mapper和Reducer线程获得了MyJob类静态变量的初始拷贝(这份拷贝是指MyJob执行完静态块之后静态变量的模样)。
在Task Tracker上,Mapper和Reducer分别地读写MyJob的静态变量的本地拷贝,但是并不影响原始的MyJob中的静态变量的值。
二、用分布式缓存文件存储K个质心
既然不能通过共享外部类变量的方式,那我们通过文件在map和reduce之间传递数据总可以吧,Mapper从文件中读取质心,Reducer把更新后的质心再写入这个文件。这里的问题是:如果确定要把质心放在文件中,那Mapper就需要从2个文件中读取数据--质心文件和样本数据文件。虽然有MutipleInputs可以指定map()的输入文件有多个,并可以为每个输入文件分别指定解析方式,但是MutipleInputs不能保证每条记录从不同文件中传给map()的顺序。在我们的KMeans中,我们希望质心文件全部被读入后再逐条读入样本数据。
于是乎就想到了DistributedCache,它主要用于Mapper和Reducer之间共享数据。DistributedCacheFile是缓存在本地文件,在Mapper和Reducer中都可使用本地Java I/O的方式读取它。于是我又有了一个错误的思路:
class MyMaper{
Vector<Sample> centers=new Vector<Sample>(K);
void setup(){
//读取cacheFile,给centers赋值
}
void map(){
//计算样本离哪个质心最近
}
}
class MyReducer{
Vector<Sample> centers=new Vector<Sample>(K);
void reduce(){
//更新centers
}
void cleanup(){
//把centers写回cacheFile
}
}
错因:DistributedCacheFile是只读的,在任务运行前,TaskTracker从JobTracker文件系统复制文件到本地磁盘作为缓存,这是单向的复制,是不能写回的。试想在分布式环境下,如果不同的mapper和reducer可以把缓存文件写回的话,那岂不又需要一套复杂的文件共享机制,严重地影响hadoop执行效率。
三、用分布式缓存文件存储样本数据
其实DistributedCache还有一个特点,它更适合于“大文件”(各节点内存容不下)缓存在本地。仅存储了K个质心的文件显然是小文件,与之相比样本数据文件才是大文件。
此时我们需要2个质心文件:一个存放上一次的质心prevCenterFile,一个存放reducer更新后的质心currCenterFile。Mapper从prevCenterFile中读取质心,Reducer把更新后有质心写入currCenterFile。在Driver中读入prevCenterFile和currCenterFile,比较前后两次的质心是否相同(或足够地接近),如果相同则停止迭代,否则就用currCenterFile覆盖prevCenterFile(使用fs.rename),进入下一次的迭代。
这时候Mapper就是这样的:
class MyMaper{
Vector<Sample> centers=new Vector<Sample>(K);
void map(){
//逐条读取质心,给centers赋值
}
void cleanup(){
//逐行读取cacheFile,计算每个样本点离哪个质心最近
//然后Emit(样本点所属的簇编号,样本点)
}
}
源代码
试验数据是在Mahout项目中作为example提供的,600个样本点,每个样本是一个60维的浮点向量。点击下载
为样本数据建立一个类Sample.java。
package kmeans;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.io.Writable;
public class Sample implements Writable{
private static final Log log=LogFactory.getLog(Sample.class);
public static final int DIMENTION=60;
public double arr[];
public Sample(){
arr=new double[DIMENTION];
}
public static double getEulerDist(Sample vec1,Sample vec2){
if(!(vec1.arr.length==DIMENTION && vec2.arr.length==DIMENTION)){
log.error("vector's dimention is not "+DIMENTION);
System.exit(1);
}
double dist=0.0;
for(int i=0;i<DIMENTION;++i){
dist+=(vec1.arr[i]-vec2.arr[i])*(vec1.arr[i]-vec2.arr[i]);
}
return Math.sqrt(dist);
}
public void clear(){
for(int i=0;i<arr.length;i++)
arr[i]=0.0;
}
@Override
public String toString(){
String rect=String.valueOf(arr[0]);
for(int i=1;i<DIMENTION;i++)
rect+="\t"+String.valueOf(arr[i]);
return rect;
}
@Override
public void readFields(DataInput in) throws IOException {
String str[]=in.readUTF().split("\\s+");
for(int i=0;i<DIMENTION;++i)
arr[i]=Double.parseDouble(str[i]);
}
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(this.toString());
}
}
KMeans.java
package kmeans;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Vector;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class KMeans extends Configured implements Tool{
private static final Log log = LogFactory.getLog(KMeans2.class);
private static final int K = 10;
private static final int MAXITERATIONS = 300;
private static final double THRESHOLD = 0.01;
public static boolean stopIteration(Configuration conf) throws IOException{
FileSystem fs=FileSystem.get(conf);
Path pervCenterFile=new Path("/user/orisun/input/centers");
Path currentCenterFile=new Path("/user/orisun/output/part-r-00000");
if(!(fs.exists(pervCenterFile) && fs.exists(currentCenterFile))){
log.info("两个质心文件需要同时存在");
System.exit(1);
}
//比较前后两次质心的变化是否小于阈值,决定迭代是否继续
boolean stop=true;
String line1,line2;
FSDataInputStream in1=fs.open(pervCenterFile);
FSDataInputStream in2=fs.open(currentCenterFile);
InputStreamReader isr1=new InputStreamReader(in1);
InputStreamReader isr2=new InputStreamReader(in2);
BufferedReader br1=new BufferedReader(isr1);
BufferedReader br2=new BufferedReader(isr2);
Sample prevCenter,currCenter;
while((line1=br1.readLine())!=null && (line2=br2.readLine())!=null){
prevCenter=new Sample();
currCenter=new Sample();
String []str1=line1.split("\\s+");
String []str2=line2.split("\\s+");
assert(str1[0].equals(str2[0]));
for(int i=1;i<=Sample.DIMENTION;i++){
prevCenter.arr[i-1]=Double.parseDouble(str1[i]);
currCenter.arr[i-1]=Double.parseDouble(str2[i]);
}
if(Sample.getEulerDist(prevCenter, currCenter)>THRESHOLD){
stop=false;
break;
}
}
//如果还要进行下一次迭代,就用当前质心替代上一次的质心
if(stop==false){
fs.delete(pervCenterFile,true);
if(fs.rename(currentCenterFile, pervCenterFile)==false){
log.error("质心文件替换失败");
System.exit(1);
}
}
return stop;
}
public static class ClusterMapper extends Mapper<LongWritable, Text, IntWritable, Sample> {
Vector<Sample> centers = new Vector<Sample>();
@Override
//清空centers
public void setup(Context context){
for (int i = 0; i < K; i++) {
centers.add(new Sample());
}
}
@Override
//从输入文件读入centers
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String []str=value.toString().split("\\s+");
if(str.length!=Sample.DIMENTION+1){
log.error("读入centers时维度不对");
System.exit(1);
}
int index=Integer.parseInt(str[0]);
for(int i=1;i<str.length;i++)
centers.get(index).arr[i-1]=Double.parseDouble(str[i]);
}
@Override
//找到每个数据点离哪个质心最近
public void cleanup(Context context) throws IOException,InterruptedException {
Path []caches=DistributedCache.getLocalCacheFiles(context.getConfiguration());
if(caches==null || caches.length<=0){
log.error("data文件不存在");
System.exit(1);
}
BufferedReader br=new BufferedReader(new FileReader(caches[0].toString()));
Sample sample;
String line;
while((line=br.readLine())!=null){
sample=new Sample();
String []str=line.split("\\s+");
for(int i=0;i<Sample.DIMENTION;i++)
sample.arr[i]=Double.parseDouble(str[i]);
int index=-1;
double minDist=Double.MAX_VALUE;
for(int i=0;i<K;i++){
double dist=Sample.getEulerDist(sample, centers.get(i));
if(dist<minDist){
minDist=dist;
index=i;
}
}
context.write(new IntWritable(index), sample);
}
}
}
public static class UpdateCenterReducer extends Reducer<IntWritable, Sample, IntWritable, Sample> {
int prev=-1;
Sample center=new Sample();;
int count=0;
@Override
//更新每个质心(除最后一个)
public void reduce(IntWritable key,Iterable<Sample> values,Context context) throws IOException,InterruptedException{
while(values.iterator().hasNext()){
Sample value=values.iterator().next();
if(key.get()!=prev){
if(prev!=-1){
for(int i=0;i<center.arr.length;i++)
center.arr[i]/=count;
context.write(new IntWritable(prev), center);
}
center.clear();
prev=key.get();
count=0;
}
for(int i=0;i<Sample.DIMENTION;i++)
center.arr[i]+=value.arr[i];
count++;
}
}
@Override
//更新最后一个质心
public void cleanup(Context context) throws IOException,InterruptedException{
for(int i=0;i<center.arr.length;i++)
center.arr[i]/=count;
context.write(new IntWritable(prev), center);
}
}
@Override
public int run(String[] args) throws Exception {
Configuration conf=getConf();
FileSystem fs=FileSystem.get(conf);
Job job=new Job(conf);
job.setJarByClass(KMeans.class);
//质心文件每行的第一个数字是索引
FileInputFormat.setInputPaths(job, "/user/orisun/input/centers");
Path outDir=new Path("/user/orisun/output");
fs.delete(outDir,true);
FileOutputFormat.setOutputPath(job, outDir);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setMapperClass(ClusterMapper.class);
job.setReducerClass(UpdateCenterReducer.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(Sample.class);
return job.waitForCompletion(true)?0:1;
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
FileSystem fs=FileSystem.get(conf);
//样本数据文件中每个样本不需要标记索引
Path dataFile=new Path("/user/orisun/input/data");
DistributedCache.addCacheFile(dataFile.toUri(), conf);
int iteration = 0;
int success = 1;
do {
success ^= ToolRunner.run(conf, new KMeans(), args);
log.info("iteration "+iteration+" end");
} while (success == 1 && iteration++ < MAXITERATIONS
&& (!stopIteration(conf)));
log.info("Success.Iteration=" + iteration);
//迭代完成后再执行一次mapper,输出每个样本点所属的分类--在/user/orisun/output2/part-m-00000中
//质心文件保存在/user/orisun/input/centers中
Job job=new Job(conf);
job.setJarByClass(KMeans.class);
FileInputFormat.setInputPaths(job, "/user/orisun/input/centers");
Path outDir=new Path("/user/orisun/output2");
fs.delete(outDir,true);
FileOutputFormat.setOutputPath(job, outDir);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setMapperClass(ClusterMapper.class);
job.setNumReduceTasks(0);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(Sample.class);
job.waitForCompletion(true);
}
}
注意在Driver中创建Job实例时一定要把Configuration类型的参数传递进去,否则在Mapper或Reducer中调用DistributedCache.getLocalCacheFiles(context.getConfiguration());返回值就为null。因为空构造函数的Job采用的Configuration是从hadoop的配置文件中读出来的(使用new Configuration()创建的Configuration就是从hadoop的配置文件中读出来的),请注意在main()函数中有一句:DistributedCache.addCacheFile(dataFile.toUri(), conf);即此时的Configuration中多了一个DistributedCacheFile,所以你需要把这个Configuration传递给Job构造函数,如果传递默认的Configuration,那在Job中当然不知道DistributedCacheFile的存在了。
Further
方案三还是不如人意,质心文件是很小的(因为质心总共就没几个),用map()函数仅仅是来读一个质心文件根本就没有发挥并行的作用,而且在map()中也没有调用context.write(),所以Mapper中做的事情可以放在Reducer的setup()中来完成,这样就不需要Mapper了,或者说上面设计的就不是MapReduce程序,跟平常的单线程串行程序是一样的。sigh