Hadoop之K-Means聚类算法

本文介绍了如何在Hadoop分布式环境中实现K-Means聚类算法,包括算法的伪代码、步骤和终止条件。通过读取SequenceFile格式的数据,使用Mapper和Reducer进行处理,并展示了聚类过程中的数据可视化。文章还分享了在Hadoop上实现该算法遇到的挑战和解决经验。
摘要由CSDN通过智能技术生成

在Hadoop分布式环境下实现K-Means聚类算法的伪代码如下:

输入:参数0--存储样本数据的文本文件inputfile;

            参数1--存储样本数据的SequenceFile文件inputPath;

            参数2--存储质心数据的SequenceFile文件centerPath;

            参数3--存储聚类结果文件(SequenceFile文件)所处的路径clusterPath;

            参数4--类的数量k;

输出:k个类

Begin

           读取inputPath,从中选取前k个点作为初始质心,将质心数据写入centerPath;

           While 聚类终止条件不满足

                    在Mapper阶段,读取inputPath,对于key所对应的点,遍历所有的质心,选择最近的质心,将该质心的编号作为键,

                    该点的编号作为值传递给Reducer;

                    在Reducer阶段,将Mapper阶段传递过来的值根据键归并输出,结果写入clusterPath;

                    读取clusterPath,重新计算质心,将结果写入centerPath;

           EndWhile

End

判断聚类效果好坏的常见指标是下述的准则函数值:

有理由认为上述值越小,聚类效果越好,随着循环的不断进行,上述准则函数值会收敛到一个很小的值,所以可以用这个值不再明显变化作为聚类循环的终止条件。

以下是存储样本数据(总共200个点)的本地文件kmeans.txt的部分片段(10个点):

163    61    20
17    34    25
66    7    10
14    34    34
128    5    41
49    33    24
185    58    20
83    8    14
54    3    17
96    1    13

其中第一个字段为点的id,第二个字段是点的横坐标,第三个字段是点的纵坐标。

将上述点可视化,见下图:


为了便于访问待聚类的点的ID及其坐标,将输入样本数据存储在SequenceFile格式的文件中,

其中key是点的ID,数据类型为Text,点的坐标是一个double[]型的数组,将该数组封装在类DoubleArray中,这个类需要继承Writable接口,

类DoubleArray的定义如下:DoubleArray.java

package kmeans;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Writable;
public class DoubleArray implements Writable {
	private double[] data;
	public DoubleArray() {
	}
	public DoubleArray(double[] data) {
		set(data);
	}
	public void set(double[] data) {
		this.data = data;
	}
	public double[] get() {
		return data;
	}
	public void write(DataOutput out) throws IOException {
		int length = 0;
		if (data != null) {
			length = data.length;
		}
		out.writeInt(length);
		for (int i = 0; i < length; i++) {
			out.writeDouble(data[i]);
		}
	}
	public void readFields(DataInput in) throws IOException {
		int length = in.readInt();
		data = new double[length];
		for (int i = 0; i < length; i++) {
			data[i] = in.readDouble();
		}
	}
	public double distanceTo(DoubleArray point) {
		double[] data1 = point.get();
		double distance = 0;
		for (int i = 0; i < data.length; i++) {
			distance = distance + Math.pow(data[i] - data1[i], 2);
		}
		return distance;
	}
	public void plus(DoubleArray point) {
		double[] data1 = point.get();
		for (int i = 0; i < data.length; i++) {
			data[i] = data[i] + data1[i];
		}
	}
	public void averageN(int n) {
		for (int i = 0; i < data.length; i++) {
			data[i] = data[i]/n;
		}
	}
}

在Mapper阶段,为了便于计算准则函数的值,需要向Reducer传递隶属于某个质心的点的编号以及该点到该质心的距离的平方,为此将这两项数据封装在类IdAndDistance中,该类需要继承Writable接口,代码如下:IdAndDistance.java

package kmeans;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Writable;
public class IdAndDistance implements Writable {
	private String id;
	private double distance;
	public void set(String id, double distance) {
		this.id = id;
		this.distance = distance;
	}
	public IdAndDistance() {
	}
	public IdAndDistance(String id, double distance) {
		set(id, distance);
	}
	public String getId() {
		return id;
	}
	public double getDistance() {
		return distance;
	}
	public void write(DataOutput out) throws IOException {
		out.writeUTF(id);
		out.writeDouble(distance);
	}
	public void readFields(DataInput in) throws IOException {
		id = in.readUTF();
		distance = in.readDouble();
	}
}
Mapper阶段代码:KMeansMapper.java

package kmeans;
import java.io.IOException;
import java.net.URI;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.util.ReflectionUtils;
public class KMeansMapper extends Mapper<Text, DoubleArray, Text, IdAndDistance> {
    private DoubleArray[] centers = null;  
    protected void setup(Context context) throws IOException, InterruptedException {
        super.setup(context);
        Configuration conf = context.getConfiguration();
        centers = new DoubleArray[conf.getInt("numberOfCenters", 4)];
        String centerPath = conf.get("centerPath");
        FileSystem fs =  FileSystem.get(URI.create(centerPath), conf);
        Path path = new Path(centerPath);
        SequenceFile.Reader reader = new SequenceFile.Reader(fs, path, conf);
        Text key = (Text) ReflectionUtils.newInstance(Text.cl
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值