zoj 2316 Matrix Multiplication(2-D)

题目地址:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1316

题目思想:

首先 设新矩阵为c【n】【n】, 则 c【i】【j】=sigma aT【i】【k】*a【k】【j】=sigma a【k】【i】*a【k】【j】;   

现在题目要求  sigama sigma c【i】【j】,三重求和,角标之间没有限制,于是可以将k拿到最外层,这样对内层求和时,k不变,可以看做关联矩阵某一行任意两个数相乘,

显然只用考虑两个数都是1的情形, 这样对某个1 ,1*(1+1+...+1)括号中的数恰好是 顶点k的度数,而恰好有这么多个算式,于是固定k时求出的结果就是 d(k)的平方,最后求和即可。


代码:  

#include<iostream>
using namespace std;

int main()
{
   int size;
   cin>>size;

    for(int l=0;l<size;l++)
    {
        int n, m;
        cin>>n>>m;
        int *p=new int [n];
        for(int i=0;i<n;i++)
          p[i]=0;
        for(int i=0;i<m;i++)
         {
            int k;
            cin>>k;
            p[k-1]++;
            cin>>k;
            p[k-1]++;
         }

        int sum=0;
        for(int i=0;i<n;i++)
           sum+=p[i]*p[i];
        cout<<sum<<endl;
        if(l<size-1)  cout<<endl;
    }
}


转载于:https://www.cnblogs.com/814jingqi/p/3247203.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值