题目:给定(可能是负的)整数A1、A2、…、AN,求出并确定对应的序列的最大值。如果所有的整数都是负数,那么最大连续子数列和就是0,只是求出最大值,不需要求出具体的序列,作为这个题目的变种有很多情况下给你一个确定的数列,具体求和,大同小异,共有四种解法,按照时间复杂度来解;
穷举法
这个应该是这个题目最容易想到的方式,通过循环遍历出所有的序列组合,求出最大的序列的最大值,代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
-(
NSInteger
)maxSubsequenceSum:(
NSArray
*)data{
NSInteger
maxSum=0;
//最大子序列的和
for
(
NSInteger
start=0; start<[data count]; start++) {
for
(
NSInteger
end=start; end<[data count]; end++) {
NSInteger
currentSum=0;
//当前子序列的和
//data[start]~data[end]子序列的和
for
(
NSInteger
i=start; i<=end; i++) {
currentSum+=[[data objectAtIndex:i] integerValue];
}
//通过判断给最大子序列的和赋值
if
(maxSum<currentSum) {
maxSum=currentSum;
}
}
}
return
maxSum;
}
|
这个算法三个循环,假设数组的长度为n,第一层循环为n,第二层循环n-start,第三层end-start,可算出时间复杂度O(n*n*n)=O(N^3),时间复杂度是跟输入长度的立方有关,如果数组过长会是一个灾难~
穷举精简版
对data[start]~data[end]子序列求和,可以由上一次求和data[start]~data[end-1]的结果加上data[end]得到,不需要重头开始计算,时间复杂度为O(N^2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
-(
NSInteger
)maxSubsequenceSumSecond:(
NSArray
*)data{
NSInteger
maxSum=0;
//最大子序列的和
for
(
NSInteger
start=0; start<[data count]; start++) {
NSInteger
currentSum=0;
//当前子序列的和
for
(
NSInteger
end=start; end<[data count]; end++) {
//data[start]~data[end]子序列的和,通过end加入,不需要循环
currentSum+=[[data objectAtIndex:end] integerValue];
if
(maxSum<currentSum) {
maxSum=currentSum;
}
}
}
return
maxSum;
}
|
递归版
题目中最大子序列可能在三个地方出现,左半部,右半部,跨越输入数据的中部而占据左右两部分。前两种情况递归求解,第三种情况的最大和可以通过求出前半部分最大和(包含前半部分最后一个元素)以及后半部分最大和(包含后半部分的第一个元素)相加而得到。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
-(
NSInteger
)maxSubsequenceSumThird:(
NSArray
*)data leftIndex:(
NSInteger
)left rightIndex:(
NSInteger
)right{
if
(left==right) {
if
(data[left]>0) {
//空集也算是子序列,空集和为0,最大子序列和最小为0
return
[data[left] integerValue];
}
else
{
return
0;
}
}
NSInteger
center=(left+right)/2;
NSInteger
maxLeftSum=[
self
maxSubsequenceSumThird:data leftIndex:left rightIndex:center];
NSInteger
maxRightSum=[
self
maxSubsequenceSumThird:data leftIndex:center+1 rightIndex:right];
//左半部分中包含最右边元素的子序列的最大和
NSInteger
maxLeftBorderSum=0,leftBorderSum=0;
for
(
NSInteger
i=center; i>=left; i--) {
leftBorderSum+=[data[i] integerValue];
if
(leftBorderSum>maxLeftBorderSum) {
maxLeftBorderSum=leftBorderSum;
}
}
//右半部分包含最左边的值
NSInteger
maxRightBorderSum=0,rightBorderSum=0;
for
(
NSInteger
i=center+1;i<right;i++) {
rightBorderSum+=[data[i] integerValue];
if
(rightBorderSum>maxRightBorderSum) {
maxRightBorderSum=rightBorderSum;
}
}
//跨越左右部分的最大序列和
NSInteger
maxMiddleSum=maxLeftBorderSum+maxRightBorderSum;
//左部分,右部分,跨越左右的最大序列和的最大值
NSInteger
result=maxLeftSum>maxRightSum?maxLeftSum:maxRightSum;
return
result>maxMiddleSum?result:maxMiddleSum;
}
|
如果left==right,那么T(1)=1,两层循环的时间的次数2/N,最后的时间复杂度T(N)=2T(N/2)+O(N),等价于2T(N/2)+N,T(N)=N*(K+1)(这个可以自己推导),T(N)=N*(k+1)=NlogN +N=O(N );
最简版
一次遍历,如果小于0,重新设置循环的位置,时间复杂度O(N):
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
-(
NSInteger
)maxSubsequenceSumFour:(
NSArray
*)data{
NSInteger
maxSum=0,currentSum=0;
for
(
NSInteger
index=0; index<[data count]; index++) {
currentSum+=[[data objectAtIndex:index] integerValue];
//判断当前序列的和是否为正数
if
(currentSum<0) {
currentSum=0;
}
else
if
(maxSum<currentSum) {
maxSum=currentSum;
}
}
return
maxSum;
}
|
还有一个极端的情况,如果都是负数,不想返回0,获取最大的负整数即可:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
-(
NSInteger
)maxSubsequenceSumSpecial:(
NSArray
*)data{
NSInteger
maxSum=[[data objectAtIndex:0] integerValue],currentSum=0;
NSInteger
maxNegative=[[data objectAtIndex:0] integerValue];
for
(
NSInteger
index=0; index<[data count]; index++) {
currentSum+=[[data objectAtIndex:index] integerValue];
if
(currentSum<0) {
currentSum=0;
}
else
if
(maxSum<currentSum) {
maxSum=currentSum;
}
if
(maxNegative<[data[index] integerValue]) {
maxNegative=[data[index] integerValue];
}
}
return
maxSum>maxNegative?maxSum:maxNegative;
}
|
调用如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
NSArray
*dataSource=[[
NSArray
alloc]initWithObjects:@
"10"
,@
"-9"
,@
"-3"
,@
"8"
,@
"-2"
,
nil
];
MaxSubsequence *maxSubsequence=[[MaxSubsequence alloc]init];
NSInteger
result=[maxSubsequence maxSubsequenceSum:dataSource];
NSLog
(@
"最大的连续子序列的和:%ld"
,(
long
)result);
NSInteger
resultSecond=[maxSubsequence maxSubsequenceSumSecond:dataSource];
NSLog
(@
"第二种最大的连续子序列的和:%ld"
,(
long
)resultSecond);
NSInteger
thirdResult=[maxSubsequence maxSubsequenceSumThird:dataSource leftIndex:0 rightIndex:dataSource.count-1];
NSLog
(@
"第三种最大的连续子序列的和:%ld"
,(
long
)thirdResult);
NSInteger
fourResult=[maxSubsequence maxSubsequenceSumFour:dataSource];
NSLog
(@
"第四种最大的连续子序列的和:%ld"
,(
long
)fourResult);
NSInteger
specialResult=[maxSubsequence maxSubsequenceSumSpecial:dataSource];
NSLog
(@
"第四种全是负数最大的连续子序列的和:%ld"
,(
long
)specialResult);
|