GO环境搭建

 

 

1,window下安装go

google有提供win安装包,对于新手还是非常简单的!

https://code.google.com/p/go/downloads/list

 

2,

配置环境变量

(1). 新建 变量名:GOBIN 变量值 :c:\go\bin

(2). 新建 变量名:GOARCH 变量值:386

(3). 新建 变量名:GOOS 变量值:windows

(4). 新建 变量名: GOROOT 变量值:c:\go

(5). 编辑 Path 在Path的变量值的最后加上 %GOBIN%

 

3 下载gocode实现编码提示

在cmd中输入

 go get github.com/nsf/gocode

    go install github.com/nsf/gocode

如果不行 就直接到网上下载个gocde.exe  (http://download.csdn.net/detail/xiaofengtoo/5328303)其实下载源码也是编译一下成gocede.exe.

把gocode.exe  放到go安装的目录下的bin文件夹下面就完成了

4.下载Sublime Text 3

本来我是下载的 sunlime text2 结果配置完go,写helloworld是报这个错误 Failed to construct ipc body: Encode Error: 'utf8'  原因是不对于go文件时 是utf-8 无bom的格式读的。go又不支持这个编码所以就报错。 但Sublime Text 3 就没问题

 

 

下载地址:

 

http://www.sublimetext.com/3

 

ST3的破解   推荐朽木博客的方法:

 

http://www.xiumu.org/note/sublime-text-3.shtml

 

 

5,配置Sublime Text 3

 

2. 安装Package Control

 

Package Control的安装

在打开 Sublime Text 3以后,按下快捷键 Ctrl + `,打开命令窗行,这个按键在Tab键的上面,输入以下命令

 

 

 

import urllib.request,os; pf = 'Package Control.sublime-package'; ipp = sublime.installed_packages_path(); urllib.request.install_opener( urllib.request.build_opener( urllib.request.ProxyHandler()) ); open(os.path.join(ipp, pf), 'wb').write(urllib.request.urlopen( 'http://sublime.wbond.net/' + pf.replace(' ','%20')).read())

 

安装好以后重启ST,就能使用Package Control了

 

.现在安装GoSublime插件了,按住Ctrl+Shilft+p会弹出一个对话框

 



 

输入install回车弹出一个安装包的对话框

 


 

如入GoSublime选择GoSublime回车

 

输入Go build选中回车(这个属于可选)

 

搞定,GoSublime安装成功。

 

修改GoSublime配置:在 Preferences菜单下,找到Package Settings,然后找到 GoSublime,再往下找到 Settings - Default。再打开的文件中,添加如下配置,并保存:

 


 

好了,到目前为止,开发环境搭建完成。

 

打开 Sublime Text 2,新建 helloworld.go,编写代码如下:

 

见证Go代码自动提示的时刻了

 

输入一个p

 


 

回车(enter键)

 


 

main方法,包自动给你生成了。

 

下面是一个打印的例子:

 




按下快捷键 Ctrl + b 界面下方会出现如下界面:

 


 

 

 

输入 go build hello.go

 


 

运行,同样 按下快捷键 Ctrl + b 界面下方会出现如下界面,输入 hello回车 。如图:

 


 

好了,到现在,开发环境就搭建完毕了.

 

 

 

参考:http://blog.csdn.net/love_se/article/details/7754274

http://blog.csdn.net/cyxcw1/article/details/10329481

http://www.xiumu.org/note/sublime-text-3.shtml

http://www.cnblogs.com/sevenyuan/archive/2013/03/01/2938351.html

http://vincepeng.iteye.com/blog/1965202

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于YOLOv9实现工业布匹缺陷(破洞、污渍)检测系统python源码+详细运行教程+训练好的模型+评估 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值