【BZOJ4310】跳蚤

【BZOJ4310】跳蚤

Description

  很久很久以前,森林里住着一群跳蚤。一天,跳蚤国王得到了一个神秘的字符串,它想进行研究。
  首先,他会把串分成不超过 k 个子串,然后对于每个子串 S,他会从S的所有子串中选择字典序最大的那一个,并在选出来的 k 个子串中选择字典序最大的那一个。他称其为“魔力串”。
  现在他想找一个最优的分法让“魔力串”字典序最小。

Input

  从文件flea.in中读入数据。
  第一行一个整数k。
  接下来一个长度不超过10^5的字符串 S。

Output

  输出到文件flea.out中。
  输出一行,表示字典序最小的“魔力串”。

Sample Input

13 bcbcbacbbbbbabbacbcbacbbababaabbbaabacacbbbccaccbcaabcacbacbcabaacbccbbcbcbacccbcccbbcaacabacaaaaaba

Sample Output

cbc

Hint

【数据规模和约定】
  对于30%的数据,S的长度<=100
  对于60%的数据,S的长度<=1000
  对于100%的数据,S的长度<=100000

后缀自动机+二分+Hash。

看到最大值最小,容易想到二分答案。

我们将原串建好后缀自动机,这样我们二分的就是字符串的排名。二分出一个\(ans\)过后,找到具有该排名的串在原串中的位置(这个很好找)。

然后就贪心验证。从后往前尽量加入字符串,如果不能加入就开一个新的子串。在最前面加入一个字符后相当于加入了一个前缀,所以我们比较的时候用二分+Hash找到第一个与答案串不同的位置,然后比较大小。

代码:

#include<bits/stdc++.h>
#define ll long long
#define N 200005
#define int ll

using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}

int K,n;
char s[N];
int mxlen[N<<1],fail[N<<1];
int ch[N<<1][26];
int cnt=1,last=1;
int pos[N<<1];
void Insert(int f,int i) {
    static int p,now;
    now=++cnt;
    p=last,last=now;
    pos[now]=i;
    mxlen[now]=mxlen[p]+1;
    while(p&&!ch[p][f]) ch[p][f]=now,p=fail[p];
    if(!p) return fail[now]=1,void();
    int q=ch[p][f];
    if(mxlen[q]==mxlen[p]+1) return fail[now]=q,void();
    int New=++cnt;
    memcpy(ch[New],ch[q],sizeof(ch[q]));
    fail[New]=fail[q];
    fail[q]=fail[now]=New;
    mxlen[New]=mxlen[p]+1;
    while(p&&ch[p][f]==q) ch[p][f]=New,p=fail[p];
}

int t[N<<1],q[N<<1];
ll size[N<<1];
void top_sort(int n) {
    for(int i=1;i<=cnt;i++) t[mxlen[i]]++;
    for(int i=1;i<=n;i++) t[i]+=t[i-1];
    for(int i=1;i<=cnt;i++) q[t[mxlen[i]]--]=i;
    for(int i=cnt;i>=1;i--) {
        int v=q[i];
        size[v]=1;
        for(int j=0;j<26;j++)
            if(ch[v][j]) size[v]+=size[ch[v][j]];
        pos[fail[v]]=pos[v];
    }
}

const ll p=37,mod=1e9+7;
ll Hash[N],pw[N];
int ls,rs;
int ed,len; 

void Find_kth(int now,ll k) {
    if(k==1&&now!=1) return ed=pos[now],void();
    k-=(now!=1);
    for(int i=0;i<26;i++) {
        if(!ch[now][i]) continue ;
        if(size[ch[now][i]]>=k) {
            len++;
            Find_kth(ch[now][i],k);
            return ;
        }
        k-=size[ch[now][i]];
    }
}

ll Get_hash(int l,int r) {return (Hash[r]-Hash[l-1]*pw[r-l+1]%mod+mod)%mod;}
int same(int l1,int r1,int l2,int r2) {
    if(s[l1]!=s[l2]) return 0;
    int l=1,r=min(r1-l1+1,r2-l2+1),mid;
    while(l<r) {
        mid=l+r+1>>1;
        if(Get_hash(l1,l1+mid-1)==Get_hash(l2,l2+mid-1)) l=mid;
        else r=mid-1;
    }
    return l;
}

bool low(int l1,int r1,int l2,int r2) {
    int x=same(l1,r1,l2,r2);
    if(x==r1-l1+1) return 1;
    if(x==r2-l2+1) return 0;
    return s[l1+x]<s[l2+x];
}

bool solve(int ans) {
    ed=0,len=0;
    Find_kth(1,ans);
    ls=ed-len+1,rs=ed;
    int k=1;
    int i,j;
    for(i=n;i>=1;i--) {
        for(j=i;j>=1;j--) {
            if(!low(j,i,ls,rs)) {
                if(i==j) return 0;
                k++;
                break;
            }
        }
        i=j+1;
    }
    return k<=K;
}

void pre() {
    K=Get();
    scanf("%s",s+1);
    n=strlen(s+1);
    pw[0]=1;
    for(int i=1;i<=n;i++) pw[i]=pw[i-1]*p%mod;
    for(int i=1;i<=n;i++) Hash[i]=(Hash[i-1]*p+s[i]-'a'+1)%mod;
    for(int i=1;i<=n;i++) Insert(s[i]-'a',i);
    top_sort(n); 
}

main() {
    pre(); 
    ll l=1,r=size[1]-1,mid;
    while(l<r) {
        mid=l+r>>1;
        if(solve(mid)) r=mid;
        else l=mid+1;
    }
    ed=0,len=0;
    Find_kth(1,l);
    rs=ed,ls=rs-len+1;
    for(int i=ls;i<=rs;i++) cout<<s[i];
    return 0;
    for(int i=1;i<=size[1]-1;i++) {
        ed=0,len=0;
        Find_kth(1,i);
        rs=ed,ls=ed-len+1;
        for(int i=ls;i<=rs;i++) cout<<s[i];
        cout<<"\n";
    }
    return 0;
}

转载于:https://www.cnblogs.com/hchhch233/p/10094622.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值