AI 高等数学、概率论基础

本文深入讲解了数学中的关键概念,包括两边夹定理、极限、泰勒展式、概率论等,并探讨了导数、函数的凸凹性、条件概率等重要主题。此外,还介绍了多项分布、泊松分布等统计学基础,以及贝叶斯公式在实际问题中的应用。
摘要由CSDN通过智能技术生成

一、概论

  基础引入:

    

  原理一:【两边夹定理】

    

  原理二:【极限】

        

    X为角度x对应的圆弧的点长;

  原理三【单调性】:

    

  引入:

      

二、导数

     

  常见函数的导数:

    

四、应用:

    

  求解:

    

  泰勒展式和麦克劳林展式:

    

  泰勒展式在x0 = 0处展开得到麦克劳林展式

  Taylor公式的应用1:

    

  变种:

    

  Taylor公式应用2:

    

  方向导数:

   

  梯度:

    

  函数的凸凹性:

    

  函数凸凹性判定:

    

  

  凸函数性质的应用:

    

    

五、概率论

  

 

  概率为0例子: 把一枚针投在一个平面上,则概率为0(一个点 之于 一个面)

  古典概型:

    

    思路:

      

      

  古典概型变种问题:

    生日悖论:

    

    

  古典概型总结:

    

  几何概型:

   

    

  条件概率:

    

  条件概率: 在已知B发送的条件下,A发生的概率

      

  全概率:

    

    全概率公式的意义在于: 当直接计算P(A)比较困难,而P(Bi),P(A|Bi)  (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...Bn,这样事件A就被事件AB1,AB2,...ABn分解成了n部分,即A=AB1+AB2+...+ABn, 每一Bi发生都可能导致A发生相应的概率是P(A|Bi),由加法公式得

         P(A)=P(AB1)+P(AB2)+....+P(ABn)

               =P(A|B1)P(B1)+P(A|B2)P(B2)+...+P(A|Bn)P(PBn)

  贝叶斯公式:

    与全概率公式解决的问题相反,贝叶斯是建立在条件概率的基础上寻找事件发生的原因(即大事件A已经发生的条件下,分割中的小事件Bi的概率),设B1,B2,...是样本空间Ω的一个划分,则对任一事件A(P(A)>0),有

      

        B常被视为导致试验结果A发生的”原因“,P(Bi)(i=1,2,...)表示各种原因发生的可能性大小,故称先验概率;P(Bi|A)(i=1,2...)则反映当试验产生了结果A之后,再对各种原因概率的新认识,故称后验概率。

   贝叶斯公式的应用:

    

     

  两学派的认知:【频率学派 && 贝叶斯学派】

    

  贝叶斯公式扩展:

    

  两点分布:

    

  二项分布:【伯努力分布】

    

  泊松分布【Taylor展式结合】:

    

    

 

  泊松分布的应用:

    

  连续分布之均匀分布:

    

   连续分布之指数分布:

      

  指数分布的无记忆性:

    

  连续分布之正态分布【高斯分布】:

     

  总结:

    

  指数族:

    二项分布【伯努力分布】,正态分布【高斯分布】属于指数族

  logistic函数【sigmod函数】:

    

  Logistic函数的导数:

     

 期望:

    

  期望的性质:

    

    note: P(xy) = P(x) P(y)   -->  x, y独立

  方差:

    

  协方差:

    

  协方差、独立、不相关关系:

    

  协方差的意义:

    

  协方差的上界:

    

       

  独立一定不相关,不相关不一定独立,不相关只是线性独立,可能是非线性不独立;

相关系数:

   

   其中:Var(x): 标准差;

 协方差矩阵:

    

   原点矩 和 中心矩

    

     期望为一阶原点矩, 方差为2阶中心矩

 概念总结:

    

  偏度:

        

      偏度为0, 则是正态分布

  偏度公式:

      

  峰度:

      

  应用:

    

    

  引入切比雪夫不等式:

    

  大数定理:

    

    

  中心极限定理:

    

  标准的中心极限定理的问题:

    

  中心极限定理的意义:

    

  样本的统计量:

    

  样本的矩:

    

  随机变量的矩 和 样本的矩, 有什么关系呢??

    

  矩估计:【非常重要】

     

  正态分布的矩估计:

    

  均匀分布的矩估计:

    

  贝叶斯公式带来的思考:

    

  最大似然估计:

      

  极大似然估计的具体实践:

      

  极大似然估计的应用:

      

  正态分布的极大似然估计:

    

        

    

  总结:

    

  极大似然估计与过拟合:

    

    5、 10 为超参数;

技术选型 【后端】:Java 【框架】:springboot 【前端】:vue 【JDK版本】:JDK1.8 【服务器】:tomcat7+ 【数据库】:mysql 5.7+ 项目包含前后台完整源码。 项目都经过严格调试,确保可以运行! 具体项目介绍可查看博主文章或私聊获取 助力学习实践,提升编程技能,快来获取这份宝贵的资源吧! 在当今快速发展的信息技术领域,技术选型是决定一个项目成功与否的重要因素之一。基于以下的技术栈,我们为您带来了一份完善且经过实践验证的项目资源,让您在学习和提升编程技能的道路上事半功倍。以下是该项目的技术选型和其组件的详细介绍。 在后端技术方面,我们选择了Java作为编程语言。Java以其稳健性、跨平台性和丰富的库支持,在企业级应用中处于领导地位。项目采用了流行的Spring Boot框架,这个框架以简化Java企业级开发而闻名。Spring Boot提供了简洁的配置方式、内置的嵌入式服务器支持以及强大的生态系统,使开发者能够更高效地构建和部署应用。 前端技术方面,我们使用了Vue.js,这是一个用于构建用户界面的渐进式JavaScript框架。Vue以其易上手、灵活和性能出色而受到开发者的青睐,它的组件化开发思想也有助于提高代码的复用性和可维护性。 项目的编译和运行环境选择了JDK 1.8。尽管Java已经推出了更新的版本,但JDK 1.8依旧是一种成熟且稳定的选择,广泛应用于各类项目中,确保了兼容性和稳定性。 在服务器方面,本项目部署在Tomcat 7+之上。Tomcat是Apache软件基金会下的一个开源Servlet容器,也是应用最为广泛的Java Web服务器之一。其稳定性和可靠的性能表现为Java Web应用提供了坚实的支持。 数据库方面,我们采用了MySQL 5.7+。MySQL是一种高效、可靠且使用广泛的关系型数据库管理系统,5.7版本在性能和功能上都有显著的提升。 值得一提的是,该项目包含了前后台的完整源码,并经过严格调试,确保可以顺利运行。通过项目的学习和实践,您将能更好地掌握从后端到前端的完整开发流程,提升自己的编程技能。欢迎参考博主的详细文章或私信获取更多信息,利用这一宝贵资源来推进您的技术成长之路!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值