Report, 20150423, On Distance Rate

Section 1. On "Distance Rate"

Definition 1. The Riemannian distance of two positive-definite symmetric matrices $P_1$ and $P_2$ is \[d\left( {{P_1},{P_2}} \right) = {\left\| {\log \left( {{P_1}^{ - 1}{P_2}} \right)} \right\|_F} = {\left( {\sum\limits_{i = 1}^n {{{\ln }^2}{\lambda _i}} } \right)^{\frac{1}{2}}}\] where $\lambda_i,~i=1,\ldots,n$ are the eigenvalues of $P_1^{-1}P_2$.

Lemma 1. If a function $H\left( z \right) = \sum\nolimits_{n = 0}^\infty  {{h_n}{z^{ - n}}} $ is minimum-phase and $h_0 \ne 0$, then \begin{equation} \nonumber \ln h_0^2 = \frac{1}{{2\pi }}\int_{ - \pi }^\pi  {\ln {{\left| {H\left( {{e^{j\omega }}} \right)} \right|}^2}d\omega }. \end{equation}

For a minimum-phase system, we have shown that \[\left[ {\begin{array}{*{20}{c}} {{y_0}}\\ {{y_1}}\\  \vdots \\ {{y_{n - 1}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{h_0}}&0& \cdots &0\\ {{h_1}}&{{h_0}}& \cdots &0\\  \vdots & \vdots &{}& \vdots \\ {{h_{n - 1}}}&{{h_{n - 2}}}& \cdots &{{h_0}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{u_0}}\\ {{u_1}}\\  \vdots \\ {{u_{n - 1}}} \end{array}} \right] \buildrel \Delta \over = A_n\left[ {\begin{array}{*{20}{c}} {{u_0}}\\ {{u_1}}\\  \vdots \\ {{u_{n - 1}}} \end{array}} \right].\]

Suppose that $h_0 \ne 0$ which implies that $A_n$ is nonsingular and let the system input be Gaussian white with zero mean and $\sigma_u^2$ as covariance. Let ${\tilde u_k} = {[ {\begin{array}[b]{*{20}{c}} {{u_0}}&{{u_1}}& \cdots &{{u_{k-1}}} \end{array}}]^T}$ and ${\tilde y_k} = {[ {\begin{array}[b]{*{20}{c}} {{y_0}}&{{y_1}}& \cdots &{{y_{k-1}}} \end{array}}]^T}$, it's easy to see that \begin{equation} \label{def_Uk_Yk} \begin{aligned} {U_k} &= E\left\{ {{{\tilde u}_k}{{\tilde u}_k}^T} \right\} = \sigma_u^2 I_k\\ {Y_k} &= E\left\{ {{{\tilde y}_k}{{\tilde y}_k}^T} \right\} = \sigma_u^2 A_k A_k^T \end{aligned} \end{equation} which implies that ${U_k}^{ - 1}{Y_k} = A_k A_k^T$.

Now we define the distance rate as

\begin{equation} \label{def_dist_rate}
\begin{aligned}
\bar d\left( {U,Y} \right) &= \mathop {\lim \sup }\limits_{k \to \infty } \frac{{d\left( {{U_k},{Y_k}} \right)}}{k^{1/2}} \\
 &= \mathop {\lim \sup }\limits_{k \to \infty }{\left( {\frac{1}{k}\sum\limits_{i = 1}^k {{{\ln }^2}{\lambda _i}\left( {U_k^{ - 1}{Y_k}} \right)} } \right)^{\frac{1}{2}}}.
\end{aligned}
\end{equation}

Directly substitute (\ref{def_Uk_Yk}) into (\ref{def_dist_rate}), we have \begin{equation}\nonumber \begin{aligned} \frac{{d\left( {{U_k},{Y_k}} \right)}}{{{k^{1/2}}}} &= {\left( {\frac{1}{k}\sum\limits_{i = 1}^k {{{\ln }^2}{\lambda _i}\left( {{A_k}A_k^T} \right)} } \right)^{\frac{1}{2}}} \\ &\ge \frac{1}{k}\sum\limits_{i = 1}^k {\ln {\lambda _i}\left( {{A_k}A_k^T} \right)}  \\ &= \frac{1}{k}\ln \left| {{A_k}A_k^T} \right| \\ &= \frac{1}{k}\ln {\left| {{h_0}} \right|^{2k}} \\ &= \ln {\left| {{h_0}} \right|^2} \end{aligned} \end{equation} or, more clearly, $\bar d\left( {U,Y} \right) \ge \ln {\left| {{h_0}} \right|^2}$. Furthermore, by lemma 1 and Papoulis's theorem, we know that \[\bar d\left( {U,Y} \right) \ge \frac{1}{{2\pi }}\int_{ - \pi }^\pi  {\ln {{\left| {H\left( {{e^{j\omega }}} \right)} \right|}^2}d\omega }  = \bar h\left( y \right) - \bar h\left( u \right).\] On the other hand, the distance rate is bounded by the absolute value of the logarithm of the maximum singular value of $A_k$'s, i.e., \begin{equation} \begin{aligned} \bar d\left( {U,Y} \right) &= \mathop {\lim \sup }\limits_{k \to \infty } {\left( {\frac{1}{k}\sum\limits_{i = 1}^k {{{\ln }^2}{\lambda _i}\left( {{A_k}A_k^T} \right)} } \right)^{\frac{1}{2}}} \\ &\le \mathop {\lim \sup }\limits_{k \to \infty } {\left( {\frac{1}{k}\sum\limits_{i = 1}^k {\max\left\{ {{{\ln }^2}{\lambda _i}\left( {{A_k}A_k^T} \right)} \right\}} } \right)^{\frac{1}{2}}} \\ &\le \mathop {\sup }\limits_k \left( {\left| {\ln {\lambda _i}\left( {{A_k}A_k^T} \right)} \right|} \right). \end{aligned} \end{equation} Generally, we have \[\mathop {\lim \sup }\limits_{k \to \infty } \frac{1}{k}\ln \left| {U_k^{ - 1}{Y_k}} \right| \le \bar d\left( {U,Y} \right) \le \mathop {\sup }\limits_k \left( {\left| {\ln {\lambda _i}\left( {U_k^{ - 1}{Y_k}} \right)} \right|} \right).\] However, the upper bound $\mathop {\sup }\limits_k \left( {\left| {\ln {\lambda _i}\left( {U_k^{ - 1}{Y_k}} \right)} \right|} \right)$ may be conservative or even divergent.

Section 2. A Theorem

Let $f(x)$ be a real-valued function of the class $L$, \[{c_n} = \frac{1}{{2\pi }}\int_{ - \pi }^\pi  {{e^{-inx}}f\left( x \right)dx} ,~~~n = 0, \pm 1, \pm 2, \ldots ,\] its Fourier coefficients. We consider the finite Toeplitz forms \begin{equation} \begin{aligned} {T_n}\left( f \right) &= \sum\limits_{i,j = 0,1,2, \ldots ,n} {{c_{j - i}}{u_i}{{\bar u}_j}}  \\ &= \frac{1}{{2\pi }}\int_{ - \pi }^\pi  {{{\left| {{u_0} + {u_1}{e^{ix}} +  \cdots  + {u_n}{e^{inx}}} \right|}^2}f\left( x \right)dx} ,\\ &~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~n = 0,1,2, \ldots. \end{aligned} \end{equation} The eigenvalues of the Hermitian form $T_n(f)$ are defined as the roots of the characteristic equation $\det T_n(f-\lambda)=0$; we denote them by $${\lambda _1^{\left( n \right)}},{\lambda _2^{\left( n \right)}},\ldots,{\lambda _n^{\left( n \right)}}.$$ As well known, these values are all real.

Theorem 1. [1] We denote by $m$ and $M$ the 'essential' lower bound and upper bound of $f(x)$, respectively, and assume that $m$ and $M$ are finite. If $G(\lambda)$ is any continuous function defined in the finite interval $m \le \lambda \le M$, we have \[\mathop {\lim }\limits_{n \to \infty } \frac{{G\left( {\lambda _1^{\left( n \right)}} \right) + G\left( {\lambda _2^{\left( n \right)}} \right) +  \cdots  + G\left( {\lambda _{n + 1}^{\left( n \right)}} \right)}}{{n + 1}} = \frac{1}{{2\pi }}\int_{ - \pi }^\pi  {G\left[ {f\left( x \right)} \right]dx}.\]

Corollary. [2] \[\mathop {\lim }\limits_{n \to \infty } \frac{{\sum\nolimits_{i = 1}^n {G\left( {{\lambda _i}\left( {\Sigma \left( {e_1^k} \right)} \right)} \right)} }}{n} = \frac{1}{{2\pi }}\int_{ - \pi }^\pi  {G\left[ {{{\hat F}_e}\left( \omega  \right)} \right]d\omega } .\]

References

[1] Ulf Grenander and Gabor Szego. Toeplitz Forms and Their Applications. Univ. Calif. Press, 2001.

[2] N.C. Martins and M.A. Dahleh. Fundamental limitations of performance in the presence of finite capacity feedback. In American Control Conference, 2005. Proceedings of the 2005, pages 79–86 vol. 1, June 2005.

转载于:https://www.cnblogs.com/aujun/p/4451487.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值