三角函数求值三个类型

类型一、给角求值

例1求值:\(\cfrac{cos85^{\circ}+sin25^{\circ}cos30^{\circ}}{cos25^{\circ}}\)

分析:这类题目往往需要将非特殊角拆分,然后约掉含有非特殊角的代数式,就得到了最终的值。

原式=\(\cfrac{cos(90^{\circ}-5^{\circ})+\cfrac{\sqrt{3}}{2}sin25^{\circ}}{cos25^{\circ}}\)

\(=\cfrac{sin5^{\circ}+\cfrac{\sqrt{3}}{2}sin25^{\circ}}{cos25^{\circ}}\)

\(=\cfrac{sin(30^{\circ}-25^{\circ})+\cfrac{\sqrt{3}}{2}sin25^{\circ}}{cos25^{\circ}}\)

\(=\cfrac{\cfrac{1}{2}cos25^{\circ}}{cos25^{\circ}}=\cfrac{1}{2}\)

例2求值:\(\cfrac{sin^250^{\circ}}{1+sin10^{\circ}}\)

分析:原式=\(\cfrac{1-cos100^{\circ}}{2(1+sin10^{\circ})}\)

\(=\cfrac{1-cos(90^{\circ}+10^{\circ})}{2(1+sin10^{\circ})}\)

\(=\cfrac{1+sin10^{\circ}}{2(1+sin10^{\circ})}=\cfrac{1}{2}\)

类型二、给值求值

  • 角度一:已知角是一个,未知角也是一个角

例3【教材习题改编】已知\(sin(\alpha-\cfrac{\pi}{3})=\cfrac{15}{17}\)\(\alpha\in(\cfrac{\pi}{2},\cfrac{5\pi}{6})\),则\(sin\alpha\)的值为【】

分析:如果已知的角为一个,如\(\alpha-\cfrac{\pi}{3}\),未知角也是一个,如\(\alpha\),此时二者之间的关系往往利用互余、互补、半角、倍角、特殊角的角度建立联系,

比如本题目\(\alpha=(\alpha-\cfrac{\pi}{3})+\cfrac{\pi}{3}\)

\(sin\alpha=sin[(\alpha-\cfrac{\pi}{3})+\cfrac{\pi}{3}]=sin(\alpha-\cfrac{\pi}{3})cos\cfrac{\pi}{3}+cos(\alpha-\cfrac{\pi}{3})sin\cfrac{\pi}{3}=\cfrac{15+8\sqrt{3}}{34}\).

例4【2017枣庄模拟】设\(\alpha\)为锐角,\(cos(\alpha+\cfrac{\pi}{6})=\cfrac{4}{5}\),求\(sin(2\alpha+\cfrac{\pi}{12})\)的值;

分析:注意到已知角为一个\(\alpha+\cfrac{\pi}{6}\),未知角也是一个\(2\alpha+\cfrac{\pi}{12}\),故二者之间的联系可能是从余、补、半、倍、特的角度建立联系,

故将已知角二倍得到\(2(\alpha+\cfrac{\pi}{6})=2\alpha+\cfrac{\pi}{3}\),发现还是和未知角不一样,故做差就发现,\(2\alpha+\cfrac{\pi}{12}=2(\alpha+\cfrac{\pi}{6})-\cfrac{\pi}{4}\)

\(sin(2\alpha+\cfrac{\pi}{12})=sin[2(\alpha+\cfrac{\pi}{6})-\cfrac{\pi}{4}]=sin[2(\alpha+\cfrac{\pi}{6})]cos\cfrac{\pi}{4}-cos[2(\alpha+\cfrac{\pi}{6})]sin\cfrac{\pi}{4}\)

\(=2sin(\alpha+\cfrac{\pi}{6})cos(\alpha+\cfrac{\pi}{6})cos\cfrac{\pi}{4}-[2cos^2(\alpha+\cfrac{\pi}{6})-1]sin\cfrac{\pi}{4}=\cdots=\cfrac{17\sqrt{2}}{50}\).

例5【2016·福建师大附中月考】若\(sin(\cfrac{\pi}{3}-\alpha)=\cfrac{1}{4}\),则\(cos(\cfrac{2\pi}{3}+2\alpha)\)=【】

$A、-\cfrac{7}{8}$ $B、-\cfrac{1}{4}$ $C、\cfrac{1}{4}$ $D、\cfrac{7}{8}$

分析:\(cos(\cfrac{2\pi}{3}+2\alpha)=cos[\pi-(\cfrac{2\pi}{3}-2\alpha)]\)

\(=-cos[2(\cfrac{\pi}{3}-\alpha)]=-1+2sin^2(\cfrac{\pi}{3}-\alpha)\)

\(=-1+2\times (\cfrac{1}{4})^2=-\cfrac{7}{8}\),故选A。

例6【2017黑龙江哈尔滨六中模拟】已知\(sin(\alpha+\cfrac{\pi}{3})+cos(\alpha-\cfrac{\pi}{2})=-\cfrac{4\sqrt{3}}{5}\),则\(cos(\alpha+\cfrac{2\pi}{3})\)的值为_____。

分析:先将已知条件变形为\(\sqrt{3}sin(\alpha+\cfrac{\pi}{6})=-\cfrac{4\sqrt{3}}{5}\)

\(sin(\alpha+\cfrac{\pi}{6})=-\cfrac{4}{5}\),求\(cos(\alpha+\cfrac{2\pi}{3})\)

到此题目的要求明显多了,就是个给值求值题目;

故这样变形,\(cos(\alpha+\cfrac{2\pi}{3})=cos(\alpha+\cfrac{\pi}{6}+\cfrac{\pi}{2})=-sin(\alpha+\cfrac{\pi}{6})=\cfrac{4}{5}\)

  • 角度二:已知角为两个,未知角为一个角

例7【2016聊城模拟】若\(tan\alpha=-\cfrac{1}{2}\)\(tan(\alpha-\beta)=-\cfrac{2}{5}\),求\(tan\beta\)的值。

分析:如果已知的角为两个,如\(\alpha\)\(\alpha-\beta\);未知角是一个,如\(\beta\),此时二者之间的关系往往利用两个已知角的和差就能凑出未知角,

比如本题目\(\beta=\alpha-(\alpha-\beta)\)

\(tan\beta=tan[\alpha-(\alpha-\beta)]=\cfrac{tan\alpha-tan(\alpha-\beta)}{1+tan\alpha\cdot tan(\alpha-\beta)}=-\cfrac{1}{12}\)

例8已知\(sin\alpha+sin\beta=\sqrt{3}(cos\beta-cos\alpha)\)\(\alpha,\beta\in (0,\cfrac{\pi}{2})\),则\(sin3\alpha+sin3\beta=\underline{0}\)

分析:由题目\(sin\alpha+sin\beta=\sqrt{3}(cos\beta-cos\alpha)\),则\(sin\alpha+\sqrt{3}cos\alpha=\sqrt{3}cos\beta-sin\beta\)

\(cos(\alpha-\cfrac{\pi}{6})=cos(\beta+\cfrac{\pi}{6})\)

\(\alpha-\cfrac{\pi}{6}\in(-\cfrac{\pi}{6},\cfrac{\pi}{3})\)\(\beta+\cfrac{\pi}{6}\in(\cfrac{\pi}{6},\cfrac{2\pi}{3})\)

则有\(\alpha-\cfrac{\pi}{6}=\beta+\cfrac{\pi}{6}\),即\(\alpha=\beta+\cfrac{\pi}{3}\)

\(sin3\alpha+sin3\beta=sin3(\beta+\cfrac{\pi}{3})+sin3\beta\)

\(=sin(3\beta+\pi)+sin3\beta=-sin3\beta+sin3\beta=0\)

例9设\(\alpha\)\(\beta\)都是锐角,且\(cos\alpha=\cfrac{\sqrt{5}}{5}\)\(sin(\alpha+\beta)=\cfrac{3}{5}\),则\(cos\beta\)等于【】

$A、\cfrac{2\sqrt{5}}{25}$ $B、\cfrac{2\sqrt{5}}{5}$ $C、\cfrac{2\sqrt{5}}{25}或\cfrac{2\sqrt{5}}{5}$ $D、\cfrac{2\sqrt{5}}{25}或\cfrac{\sqrt{5}}{5}$

分析:由已知可得:\(sin\alpha=\cfrac{2\sqrt{5}}{5}\)\(cos(\alpha+\beta)=\pm \cfrac{4}{5}\)

\(cos(\alpha+\beta)=\cfrac{4}{5}>\cfrac{\sqrt{5}}{5}=cos\alpha\),则有\(\alpha+\beta<\alpha\)

\(\beta<0\),这与\(\beta\)为锐角矛盾舍去,故\(cos(\alpha+\beta)=-\cfrac{4}{5}\)

所以\(cos\beta=cos[(\alpha+\beta)-\alpha]\)

\(=cos(\alpha+\beta)cos\alpha+sin(\alpha+\beta)sin\alpha\)

\(=\cfrac{2\sqrt{5}}{25}\),故选\(A\)

类型三、给值求角

例10定义运算:\(\left |\begin{array}{cccc}a&b \\c&d\end{array}\right |=ad-bc\),若\(cos\alpha=\cfrac{1}{7}\)\(\left |\begin{array}{cccc}sin\alpha&sin\beta \\cos\alpha&cos\beta\end{array}\right |=\cfrac{3\sqrt{3}}{14}\)\(0<\beta<\alpha<\cfrac{\pi}{2}\),则\(\beta\)等于【】

$A、\cfrac{\pi}{12}$ $B、\cfrac{\pi}{6}$ $C、\cfrac{\pi}{4}$ $D、\cfrac{\pi}{3}$

分析:有题目可知,\(sin\alpha cos\beta-cos\alpha sin\beta=sin(\alpha-\beta)=\cfrac{3\sqrt{3}}{14}\)

\(0<\beta<\alpha<\cfrac{\pi}{2}\),则\(0<\alpha-\beta<\cfrac{\pi}{2}\),故\(cos(\alpha-\beta)=\cfrac{13}{14}\)

\(cos\alpha=\cfrac{1}{7}\),则\(sin\alpha=\cfrac{4\sqrt{3}}{7}\)

\(sin\beta=sin[\alpha-(\alpha-\beta)]=sin\alpha cos(\alpha-\beta)-cos\alpha sin(\alpha-\beta)=\cfrac{4\sqrt{3}}{7}\times \cfrac{13}{14}-\cfrac{1}{7}\times \cfrac{3\sqrt{3}}{14}=\cfrac{\sqrt{3}}{2}\)

又由于\(0<\beta<\cfrac{\pi}{2}\),故\(\beta=\cfrac{\pi}{3}\)

例11【2018成都模拟】【难点题目】

\(sin2\alpha=\cfrac{\sqrt{5}}{5}\)\(sin(\beta-\alpha)=\cfrac{\sqrt{10}}{10}\),且\(\alpha\in [\cfrac{\pi}{4},\pi]\)\(\beta\in [\pi,\cfrac{3\pi}{2}]\),则\(\alpha+\beta\)的值是【】

$A、\cfrac{7\pi}{4}$ $B、\cfrac{9\pi}{4}$ $C、\cfrac{5\pi}{4}或\cfrac{7\pi}{4}$ $D、\cfrac{5\pi}{4}或\cfrac{9\pi}{4}$

分析:此题属于给值求角,难在角的范围的压缩。

由于\(\alpha\in [\cfrac{\pi}{4},\pi]\)\(2\alpha\in [\cfrac{\pi}{2},2\pi]\)

\(sin2\alpha=\cfrac{\sqrt{5}}{5}\),故\(2\alpha\in [\cfrac{\pi}{2},\pi]\)

\(\alpha \in [\cfrac{\pi}{4},\cfrac{\pi}{2}]\)难点:角的范围的压缩

所以\(cos2\alpha=-\cfrac{2\sqrt{5}}{5}\)

\(\alpha \in [\cfrac{\pi}{4},\cfrac{\pi}{2}]\)\(\beta\in [\pi,\cfrac{3\pi}{2}]\)

\(\beta-\alpha\in [\cfrac{\pi}{2},\cfrac{5\pi}{4}]\)

于是,\(cos(\beta-\alpha)=-\cfrac{3\sqrt{10}}{10}\)

所以\(cos(\alpha+\beta)=cos[2\alpha+(\beta-\alpha)]\)

\(=cos2\alpha cos(\beta-\alpha)-sin2\alpha sin(\beta-\alpha)\)

\(=-\cfrac{2\sqrt{5}}{5}\times (-\cfrac{3\sqrt{10}}{10})-\cfrac{\sqrt{5}}{5}\times \cfrac{\sqrt{10}}{10}\)

\(=\cfrac{\sqrt{2}}{2}\)

\(\alpha+\beta\in [\cfrac{5\pi}{4},2\pi]\),故\(\alpha+\beta=\cfrac{7\pi}{4}\),故选\(A\)

温馨提示:

1、给值求角类题目往往先转化为给值求值,然后还需要所求角的范围。

2、求角时的函数类型的选择:

①从题目所给的值来看,所给的值是正弦和余弦,则往往函数选择\(sin\)\(cos\);所给的值是正切,则往往函数选择\(tan\);简单记为给弦选弦,给切选切;

②从题目所求的角来看,若角的范围是\((0,\pi)\),则选\(cos\);若角的范围是\((-\cfrac{\pi}{2},\cfrac{\pi}{2})\),则选\(sin\);利用单调性这样就会一个萝卜一个坑,不担心多值的情形。

新题补充

例1【2019届高三理科数学第三轮模拟训练题】设\(5sin\alpha=2+4cos^2\alpha\),则\(cos2\alpha\)=________。

分析:由已知条件,解方程得到\(sin\alpha=-2\)(舍去),\(sin\alpha=\cfrac{3}{4}\),则\(cos2\alpha=1-2sin^2\alpha=-\cfrac{1}{8}\)

例2【2019届高三理科数学第三轮模拟训练题】已知\(\alpha\)为第Ⅳ象限角,且\(sin(\alpha+\cfrac{\pi}{3})=\cfrac{3}{5}\),则\(sin(\alpha+\cfrac{\pi}{12})\)=__________.

分析:由\(\alpha\)为第Ⅳ象限角,且\(sin(\alpha+\cfrac{\pi}{3})=\cfrac{3}{5}\),则\(cos(\alpha+\cfrac{\pi}{3})=\cfrac{4}{5}\)

\(sin(\alpha+\cfrac{\pi}{12})=sin[(\alpha+\cfrac{\pi}{3})-\cfrac{\pi}{4}]=\cfrac{3}{5}\times \cfrac{\sqrt{2}}{2}-\cfrac{4}{5}\times \cfrac{\sqrt{2}}{2}=-\cfrac{\sqrt{2}}{10}\)

例3【2019届高三理科数学第三轮模拟训练题】已知\(cos(\alpha+\cfrac{\pi}{4})=-\cfrac{5\sqrt{2}}{8}\),则\(sin2\alpha\)=【】

$A.-\cfrac{5}{8}$ $B.-\cfrac{9}{16}$ $C.\cfrac{9}{16}$ $D.\cfrac{5}{8}$

分析:\(sin2\al[pha=-cos(\cfrac{\pi}{2}+2\alpha)=-[2cos^2(\alpha+\cfrac{\pi}{4})^2-1]=-\cfrac{9}{16}\),故选\(B\).

例4【2019届高三理科数学第三轮模拟训练题】

三角函数式的化简证明

1、求证:\(\cfrac{sin(2\alpha+\beta)}{sin\alpha}-2cos(\alpha+\beta)=\cfrac{sin\beta}{sin\alpha}\)

2、1、求证:$(tan\alpha+\cfrac{1}{tan\alpha})\cdot \cfrac{1}{2}sin2\alpha-2cos^2\alpha=-cos2\alpha $

分析:切化弦,

原式\(=(\cfrac{sin\alpha}{cos\alpha}+\cfrac{cos\alpha}{sin\alpha})\cdot sin\alpha cos\alpha-2cos^2\alpha\)

\(=\cfrac{1}{sin\alpha cos\alpha}\cdot sin\alpha cos\alpha-2cos^2\alpha\)

\(=1-2cos^2\alpha\)

\(=-cos2\alpha\)

转载于:https://www.cnblogs.com/wanghai0666/p/8099112.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值