/**
* 用来计算介数
* 要计算所有的最短路径,用DIJ计算最短路径的时候我们可以发现一个规律:最后生成的结果是最小生成树,而一棵树是可以用一个一维数组表示的。
* 所以本代码在计算介数的时候具有和DIJ相同的时间复杂度。
*/
public class Betweeness {
private double[][] dis;
private int N;
Betweeness(double[][] dis)
{
this.dis = dis;
this.N = dis.length;
}
/**
* 根据返回的树来计算经过每个节点的最短路径的数目
* @return
*/
public double[] getBetweeness()
{
double[] b = new double[N];
for(int start = 0; start < N; start++)
{
int[] path = getPath(start); // 保存树的结构
int[] num = new int[N]; // 一个节点的路径的数目
int[] used = new int[N]; // 0:初始-->1:有子节点 0--->2:把没有子节点的处理
// 每次处理的时候找到没有子节点的点,然后将它的个数加到它的父节点中
for(int i = 0; i < N; i++)
{
for(int j = 0; j < N; j++)
{
if(path[j] != -1 && used[path[j]] == 0)
{
used[path[j]] = 1;
}
}
for(int j = 0; j < N; j++)
{
if(used[j] == 0 && path[j] >= 0)
{
num[path[j]] += 1 + num[j];
used[j] = 2;
}
}
for(int j = 0; j < N; j++)
{
if(used[j] == 1)
{
used[j] = 0;
}
}
}
for(int i = 0; i < N; i++)
{
b[i] += num[i];
}
}
double sum = N*N - N;
for(int i = 0; i < N; i++)
{
b[i] /= sum;
}
return b;
}
/**
* 计算从start出发到各个节点的最短路径,返回这棵最小生成树
* @param start
* @return
*/
public int[] getPath(int start)
{
int[] path = new int[N];
boolean[] used = new boolean[N];
double[] minDis = new double[N];
for(int i = 0; i < N; i++)
{
path[i] = -1;
minDis[i] = -1.0;
}
used[start] = true;
minDis[start] = 0.0;
for(int i = 1; i < N; i++)
{
for(int j = 0; j < N; j++)
{
if(used[j] == true || dis[start][j] < 0){
continue;
}
if(dis[start][j] >= 0.0 && (minDis[j] < 0.0 || minDis[j] > minDis[start] + dis[start][j]))
{
path[j] = start;
minDis[j] = minDis[start] + dis[start][j];
}
}
start = -1;
for(int j = 0; j < N; j++)
{
if(minDis[j] < 0.0 || used[j] == true)
{
continue;
}
if(start == -1 || minDis[start] > minDis[j])
{
start = j;
used[start] = true;
}
}
if(start == -1)
{
break;
}
}
return path;
}
/
public static void main(String[] main){
double[][] dis = {{0, 1, 5, 2},
{1, 0, 4, 6},
{5, 4, 0, 3},
{2, 6, 3, 0}};
double[] b = new Betweeness(dis).getBetweeness();
for(int i = 0; i < b.length; i++)
{
System.out.println(b[i]);
}
}
}