/**
  * <pre>
  * 求m取n的所有组合。
  * m个数分别为0,1,2...m-1.
  * 算法简述:
  *   二个组合,若仅有元素顺序不同,视其为同一个组合。
  *   左位系低位,右位系高位。
  *   按自然的取法取第一个组合(各数位分别是:0,1,2...n-1),以后的所有组合都经上一个组合变化而来:
  *   从右至左,找到有增量空间的位,将其加1,使高于该位的所有位,均比其左邻位大1,从而形成新的组合。
  *   若所有位均无增量空间,说明所有组合均已被遍历。
  *   使用该方法所生成的组合数中:对任意组合int[] c,下标小的数必定小于下标大的数.
  * </pre>
  */
 public class Combination {
  int n, m;
  int[] pre;//previous combination.
  public Combination(int n, int m) {
   this.n = n;
   this.m = m;
  }
  /**
   * 取下一个组合。可避免一次性返回所有的组合(数量巨大,浪费资源)。
   * if return null,所有组合均已取完。
   */
  public int[] next() {
   if (pre == null) {//取第一个组合,以后的所有组合都经上一个组合变化而来。
    pre = new int[n];
    for (int i = 0; i < pre.length; i++) {
     pre[i] = i;
    }
    int[] ret = new int[n];
    System.arraycopy(pre, 0, ret, 0, n);
    return ret;
   }
   int ni = n - 1, maxNi = m - 1;
   while (pre[ni] + 1 > maxNi) {//从右至左,找到有增量空间的位。
    ni--;
    maxNi--;
    if (ni < 0)
     return null;//若未找到,说明了所有的组合均已取完。
   }
   pre[ni]++;
   while (++ni < n) {
    pre[ni] = pre[ni - 1] + 1;
   }
   int[] ret = new int[n];
   System.arraycopy(pre, 0, ret, 0, n);
   return ret;
  }
 }