「CF932E」Team Work

「CF932E」Team Work

problem

Solution

题意:求\(\sum_{i=1}^n\begin{pmatrix}n\\i\end{pmatrix}\times i^k\)

大力颓柿子,根据常幂转下降幂公式,有

\[\sum_{i=1}^n\begin{pmatrix}n\\i\end{pmatrix}\times i^k\]

\[=\sum_{i=1}^n\begin{pmatrix}n\\i\end{pmatrix}\sum_{j=0}^i\begin{Bmatrix}k\\j\end{Bmatrix}\times i^{\underline j}\]

\[=\sum_{i=1}^n\begin{pmatrix}n\\i\end{pmatrix}\sum_{j=0}^i\begin{Bmatrix}k\\j\end{Bmatrix}\times j!\begin{pmatrix}i\\j\end{pmatrix}\]

\[=\sum_{j=0}^{min(n,k)}\begin{Bmatrix}k\\j\end{Bmatrix}\sum_{i=j}^n\frac{n!}{i!(n-i)!}\times j! \times \frac{i!}{j!(i-j)!}\]

\[=\sum_{j=0}^{min(n,k)}\begin{Bmatrix}k\\j\end{Bmatrix}\sum_{i=j}^n\frac{n!}{(n-i)!}\times \frac{1}{(i-j)!}\]

后面那个求和上下同乘\((n-j)!\),有

\[\sum_{j=0}^{min(n,k)}\begin{Bmatrix}k\\j\end{Bmatrix}\sum_{i=j}^n\frac{n!}{(n-i)!}\times \frac{1}{(i-j)}\times\frac{(n-j)!}{(n-j)!}\]

\[=\sum_{j=0}^{min(n,k)}\begin{Bmatrix}k\\j\end{Bmatrix}\frac{n!}{(n-j)!}\sum_{i=j}^n\begin{pmatrix}n-j\\n-i\end{pmatrix}\]

\(i<j\)的时候组合数为\(0\),不妨把\(i\)的下界变为\(0\),于是有

\[\sum_{j=0}^{min(n,k)}\begin{Bmatrix}k\\j\end{Bmatrix}\frac{n!}{(n-j)!}\sum_{i=0}^n\begin{pmatrix}n-j\\n-i\end{pmatrix}\]

\[=\sum_{j=0}^{min(n,k)}\begin{Bmatrix}k\\j\end{Bmatrix}\frac{n!}{(n-j)!}\times 2^{n-j}\]

于是我们可以\(O(k^2)\)递推求出第二类斯特林数,枚举\(j\)时迭代计算\(\frac{n!}{(n-j)!}\),快速幂计算\(2^{n-j}\)即可

Code

#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iostream>
#define inv(x) (fastpow((x),mod-2))
using namespace std;
typedef long long ll;

template <typename T> void read (T &t)
{
    t=0;int f=0;char c=getchar();
    while(!isdigit(c)){f|=c=='-';c=getchar();}
    while(isdigit(c)){t=t*10+c-'0';c=getchar();}
    if(f)t=-t;
}

const int maxk=5000+5;
const ll mod=1e9+7;


ll n,k; 
ll s[maxk][maxk];

ll fastpow(ll a,ll b)
{
    ll re=1,base=a;
    while(b)
    {
        if(b&1)
            re=re*base%mod;
        base=base*base%mod;
        b>>=1;
    }
    return re;
}

int main()
{
    read(n),read(k);
    s[0][0]=1;
    for(register ll i=1;i<=k;++i)
        for(register ll j=1;j<=i;++j)
            s[i][j]=(s[i-1][j-1]+j*s[i-1][j]%mod)%mod;
    ll kkk=1,ans=0;
    for(register ll j=0;j<=min(n,k);++j)
    {
        ans=(ans+s[k][j]*kkk%mod*fastpow(2,n-j)%mod)%mod;
        kkk=kkk*(n-j)%mod;
    }
    printf("%lld",ans);
    return 0;
}

转载于:https://www.cnblogs.com/lizbaka/p/10594393.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值