luogu CF932E Team Work

背景:

斯特林数学习中。

题目传送门:

https://www.luogu.org/problem/CF932E

题意:

∑ i = 1 n C n i i k \sum_{i=1}^{n}C_{n}^{i}i^k i=1nCniik

思路:

大力化化简式子。
∑ i = 1 n C n i i k \sum_{i=1}^{n}C_{n}^{i}i^k i=1nCniik

考虑到: i k = ∑ j = 0 k S i , j C i , j j ! i^k=\sum_{j=0}^{k}S_{i,j}C_{i,j}j! ik=j=0kSi,jCi,jj!,因此有:
= ∑ i = 1 n C n i ∑ j = 0 k S k , j C i , j j ! =\sum_{i=1}^{n}C_{n}^{i}\sum_{j=0}^{k}S_{k,j}C_{i,j}j! =i=1nCnij=0kSk,jCi,jj!

= ∑ i = 1 n n ! i ! ( n − i ) ! ∑ j = 0 k S k , j i ! j ! ( i − j ) ! j ! =\sum_{i=1}^{n}\frac{n!}{i!(n-i)!}\sum_{j=0}^{k}S_{k,j}\frac{i!}{j!(i-j)!}j! =i=1ni!(ni)!n!j=0kSk,jj!(ij)!i!j!

= ∑ i = 1 n n ! ( n − i ) ! ∑ j = 0 k S k , j 1 ( i − j ) ! =\sum_{i=1}^{n}\frac{n!}{(n-i)!}\sum_{j=0}^{k}S_{k,j}\frac{1}{(i-j)!} =i=1n(ni)!n!j=0kSk,j(ij)!1

= ∑ j = 0 k S k , j ∑ i = 1 n n ! ( n − i ) ! ( i − j ) ! =\sum_{j=0}^{k}S_{k,j}\sum_{i=1}^{n}\frac{n!}{(n-i)!(i-j)!} =j=0kSk,ji=1n(ni)!(ij)!n!

上下同时乘上 ( n − j ) ! (n-j)! (nj)!,有:
= ∑ j = 0 k S k , j ∑ i = 1 n ( n − j ) ! ( n − i ) ! ( i − j ) ! n ! ( n − j ) ! =\sum_{j=0}^{k}S_{k,j}\sum_{i=1}^{n}\frac{(n-j)!}{(n-i)!(i-j)!}\frac{n!}{(n-j)!} =j=0kSk,ji=1n(ni)!(ij)!(nj)!(nj)!n!

= ∑ j = 0 k S k , j n ! ( n − j ) ! ∑ i = 1 n C n − j n − i =\sum_{j=0}^{k}S_{k,j}\frac{n!}{(n-j)!}\sum_{i=1}^{n}C_{n-j}^{n-i} =j=0kSk,j(nj)!n!i=1nCnjni

考虑到 ∑ i = 1 n C n i = 2 i \sum_{i=1}^{n}C_{n}^{i}=2^i i=1nCni=2i,二项式定理可证(即使 n − i > n − j n-i>n-j ni>nj也没有关系,因为 C n − j n − i = 0 C_{n-j}^{n-i}=0 Cnjni=0)因此有:

= ∑ j = 0 k S k , j n ! ( n − j ) ! 2 n − j =\sum_{j=0}^{k}S_{k,j}\frac{n!}{(n-j)!}2^{n-j} =j=0kSk,j(nj)!n!2nj

Θ ( n 2 ) \Theta(n^2) Θ(n2)处理 S k , j S_{k,j} Sk,j即可,然后带入求解,即可通过。

能更优秀吗?
考虑到 S k , j = ∑ i = 0 j ( − 1 ) i i ! ( j − i ) k ( j − i ) ! S_{k,j}=\sum_{i=0}^{j}\frac{(-1)^i}{i!}\frac{(j-i)^k}{(j-i)!} Sk,j=i=0ji!(1)i(ji)!(ji)k,因此有:

= ∑ j = 0 k ∑ i = 0 j ( − 1 ) i i ! ( j − i ) k ( j − i ) ! n ! ( n − j ) ! 2 n − j =\sum_{j=0}^{k}\sum_{i=0}^{j}\frac{(-1)^i}{i!}\frac{(j-i)^k}{(j-i)!}\frac{n!}{(n-j)!}2^{n-j} =j=0ki=0ji!(1)i(ji)!(ji)k(nj)!n!2nj

= ∑ j = 0 k n ! ( n − j ) ! 2 n − j ∑ i = 0 j ( − 1 ) i i ! ( j − i ) k ( j − i ) ! =\sum_{j=0}^{k}\frac{n!}{(n-j)!}2^{n-j}\sum_{i=0}^{j}\frac{(-1)^i}{i!}\frac{(j-i)^k}{(j-i)!} =j=0k(nj)!n!2nji=0ji!(1)i(ji)!(ji)k

后面的一个 ∑ \sum 是一个卷积的形式,因此 Θ ( k log ⁡ k ) \Theta(k\log k) Θ(klogk)求解即可。
然而这道题的模数不和谐,因此我才懒得去打。

显然 n ! ( n − j ) ! \frac{n!}{(n-j)!} (nj)!n!不能直接求,怎么办呢?
n ! ( n − j ) ! = ( n − j + 1 ) ∗ ( n − j + 2 ) ∗ ( n − j + 3 ) . . . ∗ n \frac{n!}{(n-j)!}=(n-j+1)*(n-j+2)*(n-j+3)...*n (nj)!n!=(nj+1)(nj+2)(nj+3)...n,即可。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define mod 1000000007
using namespace std;
	int n,k,ans=0;
	int s[2][5010];
void init()
{
	s[1][1]=1;
	for(int i=2;i<=k;i++)
		for(int j=1;j<=i;j++)
			s[i&1][j]=((LL)s[(i&1)^1][j-1]+(LL)j*s[(i&1)^1][j]%mod)%mod;
}
int ksm(int x,int k)
{
	int tot=1;
	for(;k;k>>=1)
	{
		if(k&1) tot=(LL)tot*x%mod;
		x=(LL)x*x%mod;
	}
	return tot;
}
int main()
{
	scanf("%d %d",&n,&k);
	init();
	int tmp=n;
	for(int i=1;i<=min(n,k);i++)
	{
		ans=((LL)ans+(LL)s[k&1][i]*tmp%mod*ksm(2,n-i)%mod)%mod;
		tmp=(LL)tmp*(n-i)%mod;
	}
	printf("%d",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值