服务器linux配置tensorflow,Ubuntu下TensorFlow安装

Windows下某些tensorflow例子跑不成功,比如https://www.tensorflow.org/tutorials/wide 中的例子报下面的错误:‘

'NoneType' object has no attribute 'bucketize'

因此决定在Linux环境上安装tf。

本人用的Linux系统为Ubuntu-16.04.2-desktop-amd64, 安装在virtualbox 5.1.18版本上。

注意ubuntu需要是64位的! tensorflow官方安装包目前不支持32位的os。

1. 配置pip环境

1) 安装pip:

sudo apt install Python3-pip

2) 更新pip源

国外的pip源不稳定, 添加国内豆瓣的pip源

在主目录下创建.pip文件夹

mkdir ~/.pip

然后在该目录下创建pip.conf文件编写如下内容:

[global]

trusted-host =  pypi.douban.com

index-url = http://pypi.douban.com/simple

3) 将pip版本从8.1.1升级成9.0.1

sudo -H pip3 install --upgrade pip

2. 下载tensorflow whl文件并安装

https://pypi.python.org/pypi/tensorflow有tensorflow版本列表:

5c8de5cb8421b63e1fccfe319c3828e3.png

我们选择与python 3.5对应的tensorflow版本。直接安装tensorflow whl的命令为:

sudo -H pip3 install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.0.1-cp35-cp35m-linux_x86_64.whl

由于tensorflow的whl较大, 可能由于网络不稳定下载失败。 也可以用迅雷将whl下载下来,然后安装,对应安装命令为:

sudo -H pip3 install --upgrade tensorflow-1.0.1-cp35-cp35m-linux_x86_64.whl

上面的whl路径根据实际情况修改。

我这里安装log如下:

jason@jason-ub:/media/sf_vmshare$ sudo -H pip3 install --upgrade tensorflow-1.0.1-cp35-cp35m-linux_x86_64.whl

Processing ./tensorflow-1.0.1-cp35-cp35m-linux_x86_64.whl

Requirement already up-to-date: six>=1.10.0 in /usr/lib/python3/dist-packages (from tensorflow==1.0.1)

Collecting numpy>=1.11.0 (from tensorflow==1.0.1)

Downloading numpy-1.12.1-cp35-cp35m-manylinux1_x86_64.whl (16.8MB)

100% |████████████████████████████████| 16.8MB 66kB/s

Requirement already up-to-date: wheel>=0.26 in /usr/lib/python3/dist-packages (from tensorflow==1.0.1)

Collecting protobuf>=3.1.0 (from tensorflow==1.0.1)

Downloading protobuf-3.2.0-cp35-cp35m-manylinux1_x86_64.whl (5.6MB)

100% |████████████████████████████████| 5.6MB 174kB/s

Collecting setuptools (from protobuf>=3.1.0->tensorflow==1.0.1)

Downloading setuptools-34.3.2-py2.py3-none-any.whl (389kB)

100% |████████████████████████████████| 399kB 717kB/s

Collecting packaging>=16.8 (from setuptools->protobuf>=3.1.0->tensorflow==1.0.1)

Downloading packaging-16.8-py2.py3-none-any.whl

Collecting appdirs>=1.4.0 (from setuptools->protobuf>=3.1.0->tensorflow==1.0.1)

Downloading appdirs-1.4.3-py2.py3-none-any.whl

Collecting pyparsing (from packaging>=16.8->setuptools->protobuf>=3.1.0->tensorflow==1.0.1)

Downloading pyparsing-2.2.0-py2.py3-none-any.whl (56kB)

100% |████████████████████████████████| 61kB 1.3MB/s

Installing collected packages: numpy, pyparsing, packaging, appdirs, setuptools, protobuf, tensorflow

Found existing installation: pyparsing 2.0.3

Not uninstalling pyparsing at /usr/lib/python3/dist-packages, outside environment /usr

Found existing installation: setuptools 20.7.0

Not uninstalling setuptools at /usr/lib/python3/dist-packages, outside environment /usr

Successfully installed appdirs-1.4.3 numpy-1.12.1 packaging-16.8 protobuf-3.2.0 pyparsing-2.2.0 setuptools-34.3.2 tensorflow-1.0.1

3. 测试安装效果

为了验证安装效果, 我们跑一下https://www.tensorflow.org/tutorials/wide中的线性模型示例。

从https://github.com/tensorflow/tensorflow将tensorflow的所有代码下载下来。

这个例子需要依赖pandas,如果没有安装过,可以用下面命令安装:

sudo pip3 install pandas

然后进入tensorflow-master/tensorflow/examples/learn目录。 运行:

python3.5 wide_n_deep_tutorial.py --model_type=wide

结果符合预期:

027b4529ad602164bff1341b463370e2.png

注意直接用python不行, 默认python是 2.7版本。

092c127a25168dd09717b3e6df8177b6.png

也可以修改~/.bashrc, 添加:

alias python='/usr/bin/python3.5'

然后:

source ~/.bashrc

这样后续可以直接使用python命令。

如果有six包相关报错, 可以执行下面的命令安装six:

sudo easy_install --upgrade six

更多TensorFlow相关教程见以下内容:

Ubuntu 16.04下TensorFlow+Caffe+OpenCV3.1+Theano部署 http://www.linuxidc.com/Linux/2017-01/139503.htm

Ubuntu 16.04下CUDA8.0+Theano+Caffe+TensorFlow环境搭建  http://www.linuxidc.com/Linux/2016-09/135528.htm

0b1331709591d260c1c78e86d0c51c18.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值